Skip to main content
Log in

Universal sums of three quadratic polynomials

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let a, b, c, d, e and f be integers with ace > 0, b > –a and ba (mod 2), d > –c and dc (mod 2), f > –e and fe (mod 2). Suppose that bd if a = c, and df if c = e. When b(ab), d(cd) and f(ef) are not all zero, we prove that if each n ∈ ℕ = {0, 1, 2,...} can be written as x(ax + b)/2 + y(cy + d)/2 + z(ez + f)/2 with x, y, z ∈ ℕ then the tuple (a, b, c, d, e, f) must be on our list of 473 candidates, and show that 56 of them meet our purpose. When b ∈ [0, a), d ∈ [0, c) and f ∈ [0, e), we investigate the universal tuples (a, b, c, d, e, f) over ℤ for which any n ∈ ℕ can be written as x(ax+b)/2+y(cy+d)/2+z(ez+f)/2 with x, y, z ∈ ℤ, and show that there are totally 12,082 such candidates some of which are proved to be universal tuples over ℤ. For example, we show that any n ∈ ℕ can be written as x(x + 1)/2 + y(3y + 1)/2 + z(5z + 1)/2 with x, y, z ∈ ℤ, and conjecture that each n ∈ ℕ can be written as x(x + 1)/2 + y(3y + 1)/2 + z(5z + 1)/2 with x, y, z ∈ ℕ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arno S. The imaginary quadratic fields of class number 4. Acta Arith, 1992, 60: 321–334

    Article  MathSciNet  Google Scholar 

  2. Arno S, Robinson M L, Wheeler F S. Imaginary quadratic fields with small odd class number. Acta Arith, 1998, 83: 295–330

    Article  MathSciNet  Google Scholar 

  3. Berndt B C. Number Theory in the Spirit of Ramanujan. Providence: Amer Math Soc, 2006

    Book  Google Scholar 

  4. Cassels J W S. Rational Quadratic Forms. New York: Dover Publ, 1978

    MATH  Google Scholar 

  5. Chan W K, Oh B-K. Representations of integral quadratic polynomials. In: Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. Contemporary Mathematics, vol, 587. Providence: Amer Math Soc, 2013, 31–46

    Article  MathSciNet  Google Scholar 

  6. Cooper S, Lam H Y. On the diophantine equation n2 = x2 + by2 + cz2. J Number Theory, 2013, 133: 719–737

    Article  MathSciNet  Google Scholar 

  7. Dickson L E. Modern Elementary Theory of Numbers. Chicago: University of Chicago Press, 1939

    MATH  Google Scholar 

  8. Dickson L E. History of the Theory of Numbers, Volume II. Chelsea: AMS Chelsea Publ, 1999

    Google Scholar 

  9. Doyle G, Williams K S. A positive-definite ternary quadratic form does not represent all positive integers. Integers, 2017, 17: #A41 1–19

    MathSciNet  MATH  Google Scholar 

  10. Ge F, Sun Z-W. On some universal sums of generalized polygonal numbers. Colloq Math, 2016, 145: 149–155

    MathSciNet  MATH  Google Scholar 

  11. Guo S, Pan H, Sun Z-W. Mixed sums of squares and triangular numbers (II). Integers, 2007, 7: #A56 1–5

    MathSciNet  Google Scholar 

  12. Guy R K. Every number is expressible as the sum of how many polygonal numbers? Amer Math Monthly, 1994, 101: 169–172

    Article  MathSciNet  Google Scholar 

  13. Jones B W, Pall G. Regular and semi-regular positive ternary quadratic forms. Acta Math, 1939, 70: 165–191

    Article  MathSciNet  Google Scholar 

  14. Ju J, Oh B-K. A generalization of Gauss’ triangular theorem. Bull Korean Math Soc, 2018, 55: 1149–1159

    MathSciNet  MATH  Google Scholar 

  15. Ju J, Oh B-K, Seo B. Ternary universal sums of generalized polygonal numbers. ArXiv:1612.01157, 2016

    MATH  Google Scholar 

  16. Nathanson M B. Additive Number Theory: The Classical Bases. Graduate Texts in Mathematics, vol. 164. New York: Springer, 1996

    Book  Google Scholar 

  17. Oh B-K. Ternary universal sums of generalized pentagonal numbers. J Korean Math Soc, 2011, 48: 837–847

    Article  MathSciNet  Google Scholar 

  18. Oh B-K, Sun Z-W. Mixed sums of squares and triangular numbers (III). J Number Theory, 2009, 129: 964–969

    Article  MathSciNet  Google Scholar 

  19. Pollack P. Not Always Buried Deep A Second Course in Elementary Number Theory. Providence: Amer Math Soc, 2009

    Book  Google Scholar 

  20. Sun Z-W. Mixed sums of squares and triangular numbers. Acta Arith, 2007, 127: 103–113

    Article  MathSciNet  Google Scholar 

  21. Sun Z-W. On universal sums of polygonal numbers. Sci China Math, 2015, 58: 1367–1396

    Article  MathSciNet  Google Scholar 

  22. Sun Z-W. On x(ax + 1) + y(by + 1) + z(cz + 1) and x(ax + b) + y(ay + c) + z(az + d). J Number Theory, 2017, 171: 275–283

    Article  MathSciNet  Google Scholar 

  23. Sun Z-W. Sequence A286944 in OEIS (On-Line Encyclopedia of Integer Sequences). http://oeis.org/A286944, 2017

    Google Scholar 

  24. Wagner C. Class number 5, 6 and 7. Math Comp, 1996, 65: 785–800

    Article  MathSciNet  Google Scholar 

  25. Watkins M. Class numbers of imaginary quadratic fields. Math Comp, 2004, 73: 907–938

    Article  MathSciNet  Google Scholar 

  26. Weisstein E. Class Number from Math World A Wolfram Web Resource. http://mathworld.wolfram/ClassNumber.html

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11571162) and the NSFC-RFBR Cooperation and Exchange Program (Grant No. 11811530072). The author thanks the two referees and his graduate student Hai-Liang Wu for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZW. Universal sums of three quadratic polynomials. Sci. China Math. 63, 501–520 (2020). https://doi.org/10.1007/s11425-017-9354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9354-4

Keywords

MSC(2010)

Navigation