Skip to main content
Log in

Nonlinear time-harmonic Maxwell equations in a bounded domain: Lack of compactness

  • Reviews
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We survey recent results on ground and bound state solutions \(E:\Omega\rightarrow\mathbb{R}^3\) of the problem

$$\{ \begin{array}{*{20}{c}} {\nabla \times \left( {\nabla \times E} \right) + \lambda E = {{\left| E \right|}^{p - 2}}Ein\Omega ,} \\ {v \times E = 0on\partial \Omega } \end{array}$$

on a bounded Lipschitz domain Ω ⊂ ℝ3, where ∇× denotes the curl operator in ℝ3. The equation describes the propagation of the time-harmonic electric field \(\mathfrak{R}\{E(x)\rm{e}^{i\omega\it{t}}\}\) in a nonlinear isotropic material Ω with \(\lambda=-\mu\varepsilon\omega^2\leqslant0\), where μ and ε stand for the permeability and the linear part of the permittivity of the material. The nonlinear term \(|E|^{p-2}E\) with \(2<p\leqslant2^*=6\) comes from the nonlinear polarization and the boundary conditions are those for Ω surrounded by a perfect conductor. The problem has a variational structure; however the energy functional associated with the problem is strongly indefinite and does not satisfy the Palais-Smale condition. We show the underlying difficulties of the problem and enlist some open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche C, Bernardi C, Dauge M, et al. Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci, 1998, 21: 823–864

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartsch T, Ding Y. Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math Nachr, 2006, 279: 1267–1288

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartsch T, Mederski J. Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain. Arch Ration Mech Anal, 2015, 215: 283–306

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch T, Mederski J. Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium. J Funct Anal, 2017, 272: 4304–4333

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch T, Mederski J. Nonlinear time-harmonic Maxwell equations in domains. J Fixed Point Theory Appl, 2017, 19: 959–986

    Article  MathSciNet  MATH  Google Scholar 

  6. Benci V, Rabinowitz P H. Critical point theorems for indefinite functionals. Invent Math, 1979, 52: 241–273

    Article  MathSciNet  MATH  Google Scholar 

  7. Birman M S, Solomyak M Z. L2-theory of the Maxwell operator in arbitrary bounded domains. Russian Math Surveys, 1987, 42: 75–96

    Article  MATH  Google Scholar 

  8. Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477

    Article  MathSciNet  MATH  Google Scholar 

  9. Costabel M. A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math Methods Appl Sci, 1990, 12: 365–368

    Article  MathSciNet  MATH  Google Scholar 

  10. Dörfler W, Lechleiter A, Plum M, et al. Photonic Crystals: Mathematical Analysis and Numerical Approximation. Basel: Springer, 2012

    MATH  Google Scholar 

  11. Kirsch A, Hettlich F. The Mathematical Theory of Time-Harmonic Maxwell’s Equations: Expansion-, Integral-, and Variational Methods. New York: Springer, 2015

    MATH  Google Scholar 

  12. Kryszewski W, Szulkin A. Generalized linking theorem with an application to semilinear Schrödinger equation. Adv Differential Equations, 1998, 3: 441–472

    MathSciNet  MATH  Google Scholar 

  13. Leis R. Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien. Math Z, 1968, 106: 213–224

    Article  MathSciNet  Google Scholar 

  14. Mederski J. Ground states of time-harmonic semilinear Maxwell equations in ℝ3 with vanishing permittivity. Arch Ration Mech Anal, 2015, 218: 825–861

    Article  MathSciNet  MATH  Google Scholar 

  15. Mederski J. Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum. Topol Methods Nonlinear Anal, 2015, 46: 755–771

    MathSciNet  MATH  Google Scholar 

  16. Mederski J. Ground states of a system of nonlinear Schrödinger equations with periodic potentials. Comm Partial Differential Equations, 2016, 41: 1426–1440

    Article  MathSciNet  MATH  Google Scholar 

  17. Mederski J. The Brezis-Nirenberg problem for the curl-curl operator. J Funct Anal, 2018, 274: 1345–1380

    Article  MathSciNet  MATH  Google Scholar 

  18. Mitrea M. Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth, threedimensional Riemannian manifolds. Duke Math J, 2004, 125: 467–547

    Article  MathSciNet  MATH  Google Scholar 

  19. Monk P. Finite Element Methods for Maxwell’s Equations. Oxford: Oxford University Press, 2003

    Book  MATH  Google Scholar 

  20. Pankov A. Periodic Nonlinear Schrödinger Equation with Application to Photonic Crystals. Milan J Math, 2005, 73: 259–287

    Article  MathSciNet  MATH  Google Scholar 

  21. Picard R, Weck N, Witsch K-J. Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis (Munich), 2001, 21: 231–263

    MathSciNet  MATH  Google Scholar 

  22. Rabinowitz P. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. Providence: Amer Math Soc, 1986

    Google Scholar 

  23. Saleh B E A, Teich M C. Fundamentals of Photonics, 2nd ed. New York: Wiley, 2007

    Google Scholar 

  24. Struwe M. Variational Methods. New York: Springer-Verlag, 2008

    MATH  Google Scholar 

  25. Stuart C A. Self-trapping of an electromagnetic field and bifurcation from the essential spectrum. Arch Ration Mech Anal, 1991, 113: 65–96

    Article  MathSciNet  MATH  Google Scholar 

  26. Szulkin A, Weth T. Ground state solutions for some indefinite variational problems. J Funct Anal, 2009, 257: 3802–3822

    Article  MathSciNet  MATH  Google Scholar 

  27. Zeng X. Cylindrically symmetric ground state solutions for curl-curl equations with critical exponent. Z Angew Math Phys, 2017, 68: 135

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre of Poland (Grant No. 2013/09/B/ST1/01963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Mederski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mederski, J. Nonlinear time-harmonic Maxwell equations in a bounded domain: Lack of compactness. Sci. China Math. 61, 1963–1970 (2018). https://doi.org/10.1007/s11425-017-9312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9312-8

Keywords

MSC(2010)

Navigation