Skip to main content
Log in

On the global existence of weak solutions for the Cucker-Smale-Navier-Stokes system with shear thickening

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study the large-time dynamics of Cucker-Smale (C-S) flocking particles interacting with non-Newtonian incompressible fluids. Dynamics of particles and fluids were modeled using the kinetic Cucker-Smale equation for particles and non-Newtonian Navier-Stokes system for fluids, respectively and these two systems are coupled via the drag force, which is the main flocking (alignment) mechanism between particles and fluids. We present a global existence theory for weak solutions to the coupled Cucker-Smale-Navier-Stokes system with shear thickening. We also use a Lyapunov functional approach to show that sufficiently regular solutions approach flocking states exponentially fast in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae H-O, Choi Y-P, Ha S-Y, et al. Time-asymptotic interaction of flocking particles and an incompressible viscous fluid. Nonlinearity, 2012, 25: 1155–1177

    Article  MathSciNet  MATH  Google Scholar 

  2. Bae H-O, Choi Y-P, Ha S-Y, et al. Global existence of strong solution for the Cucker-Smale-Navier-Stokes system. J Differential Equations, 2014, 257: 2225–2255

    Article  MathSciNet  MATH  Google Scholar 

  3. Bae H-O, Choi Y-P, Ha S-Y, et al. Global existence of strong solutions to the Cucker-Smale-Stokes system. J Math Fluid Mech, 2016, 18: 381–396

    Article  MathSciNet  MATH  Google Scholar 

  4. Baranger C, Desvillettes L. Coupling Euler and Vlasov equation in the context of sprays: The local-in-time, classical solutions. J Hyperbolic Differ Equ, 2006, 3: 1–26

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellout H, Bloom F, Nečas J. Solutions for incompressible non-Newtonian fluids. C R Math Acad Sci Paris Ser I, 1993, 317: 795–800

    MathSciNet  MATH  Google Scholar 

  6. Bellout H, Bloom F, Nečas J. Young measure-valued solutions for non-Newtonian incompressible fluids. Comm Partial Differential Equations, 1994, 19: 1763–1803

    Article  MathSciNet  MATH  Google Scholar 

  7. Bohme G. Non-Newtonian Fluid Mechanics. North-Holland Series in Applied Mathematics and Mechanics. Amsterdam: Elsevier, 1987

    MATH  Google Scholar 

  8. Bolley F, Canizo J A, Carrillo J A. Stochastic mean-field limit: Non-Lipschitz forces and swarming. Math Models Methods Appl Sci, 2011, 21: 2179–2210

    Article  MathSciNet  MATH  Google Scholar 

  9. Boudin L, Desvillettes L, Grandmont C, et al. Global existence of solution for the coupled Vlasov and Navier-Stokes equations. Differ Integral Equ Appl, 2009, 22: 1247–1271

    MathSciNet  MATH  Google Scholar 

  10. Canizo J A, Carrillo J A, Rosado J. A well-posedness theory in measures for some kinetic models of collective motion. Math Models Methods Appl Sci, 2011, 21: 515–539

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrillo J A, Fornasier M, Rosado J, et al. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J Math Anal, 2010, 42: 218–236

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae M, Kang K, Lee J. Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations. J Differential Equations, 2011, 251: 2431–2465

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi Y-P, Ha S-Y, Li Z. Emergent dynamics of the Cucker-Smale flocking model and its variants. In: Active Particles, Volume 1. Modeling and Simulation in Science, Engineering and Technology. Cham: Birkhauser, 2017, 299–331

    Chapter  Google Scholar 

  14. Duan R, Fornasier M, Toscani G. A kinetic flocking model with diffusion. Comm Math Phys, 2010, 300: 95–145

    Article  MathSciNet  MATH  Google Scholar 

  15. Duan R, Lorz A, Markowich P. Global solutions to the coupled chemotaxis-fluid equations. Comm Partial Differential Equations, 2010, 35: 1635–1673

    Article  MathSciNet  MATH  Google Scholar 

  16. Ha S-Y, Kim J, Zhang X. Uniform stability of the Cucker-Smale model and its application to the mean-field limit. Kinet Relat Models, 2018, 11: 1157–1181

    Article  MathSciNet  Google Scholar 

  17. Ha S-Y, Liu J-G. A simple proof of Cucker-Smale flocking dynamics and mean field limit. Commun Math Sci, 2009, 7: 297–325

    Article  MathSciNet  MATH  Google Scholar 

  18. Ha S-Y, Tadmor E. From particle to kinetic and hydrodynamic description of flocking. Kinet Relat Models, 2008, 1: 415–435

    Article  MathSciNet  MATH  Google Scholar 

  19. Karper K, Mellet A, Trivisa K. Existence of weak solutions to kinetic flocking models. SIAM J Math Anal, 2013, 45: 215–243

    Article  MathSciNet  MATH  Google Scholar 

  20. Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow, 2nd ed. New York: Gordon and Breach, 1969

    MATH  Google Scholar 

  21. Lions J-L. Quelques méthodes de résolution des problemes aux limites non linéaires (in French). Paris: Dunod, 1969

    MATH  Google Scholar 

  22. Mälek J, Nečas J, Rokyta M, et al. Weak and Measure-Valued Solutions to Evolutionary PDEs. London: Chapman & Hall, 1996

    Book  MATH  Google Scholar 

  23. Mucha P, Peszek J, Pokorný M. Flocking particles in a non-Newtonian shear thickening fluid. ArXiv:1611.08183, 2016

    MATH  Google Scholar 

  24. Neunzert H. An Introduction to the Nonlinear Boltzmann-Vlasov Equation. Kinetic Theories and the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1048, Berlin: Springer, 1984

  25. Pokorný M. Cauchy problem for the non-Newtonian viscous incompressible fluid. Appl Math, 1996, 41: 169–201

    MathSciNet  MATH  Google Scholar 

  26. Showalter R E. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, vol. 49. Providence: Amer Math Soc, 1997

    MATH  Google Scholar 

  27. Temam R. Navier-Stokes Equations. Theory and Numerical Analysis. Amsterdam: North-Holland, 1984

    MATH  Google Scholar 

  28. Whitaker S. Introduction to Fluid Mechanics. Upper Saddle River: Prentice-Hall, 1986

    Google Scholar 

  29. Wolf J. Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity. J Math Fluid Mech, 2007, 9: 104–138

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Seung-Yeal Ha was supported by the Samsung Science and Technology Foundation (Grant No. SSTF-BA1401-03). The work of Hwa Kil Kim was supported by the National Research Foundation of Korea (Grant No. NRF2015R1D1A1A01056696). The work of Jae-Myoung Kim was supported by BK21 PLUS SNU Mathematical Sciences Division and the National Research Foundation of Korea (Grant No. NRF-2016R1D1A1B03930422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yeal Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Kim, H.K., Kim, JM. et al. On the global existence of weak solutions for the Cucker-Smale-Navier-Stokes system with shear thickening. Sci. China Math. 61, 2033–2052 (2018). https://doi.org/10.1007/s11425-017-9301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9301-y

Keywords

MSC(2010)

Navigation