Skip to main content
Log in

Piecewise linear approximation for the dynamical \(\Phi_3^4\) model

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We construct a piecewise linear approximation for the dynamical \(\Phi_3^4\) model on \(\mathbb{T}^3\). The approximation is based on the theory of regularity structures developed by Hairer (2014). They proved that renormalization in a dynamical \(\Phi_3^4\) model is necessary for defining the nonlinear term. In contrast to Hairer (2014), we apply piecewise linear approximations to space-time white noise, and prove that the solutions of the approximating equations converge to the solution of the dynamical \(\Phi_3^4\) model. In this case, the renormalization corresponds to multiplying the solution by a t-dependent function, and adding it to the approximating equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S, Röckner M. Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms. Probab Theory Related Fields, 1991, 89: 347–386

    Article  MathSciNet  Google Scholar 

  2. Bertini L, Giacomin G. Stochastic Burgers and KPZ equations from particle systems. Comm Math Phys, 1997, 183: 571–607

    Article  MathSciNet  Google Scholar 

  3. Catellier R, Chouk K. Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Ann Probab, 2018, 46: 2621–2679

    Article  MathSciNet  Google Scholar 

  4. Chueshov I, Millet A. Stochastic 2D hydrodynamical systems: Wong-Zakai approximation and support theorem. Stoch Anal Appl, 2011, 29: 570–611

    Article  MathSciNet  Google Scholar 

  5. Da Prato G, Debussche A. Strong solutions to the stochastic quantization equations. Ann Probab, 2003, 31: 1900–1916

    Article  MathSciNet  Google Scholar 

  6. Giacomin G, Lebowitz J L, Presutti E. Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. In: Stochastic Partial Differential Equations: Six Perspectives. Mathematical Surveys and Monographs, vol. 64. Providence: Amer Math Soc, 1999, 107–152

    Chapter  Google Scholar 

  7. Glimm J, Jaffe A. Quantum Physics: A Functional Integral Point of View. New York-Heidelberg-Berlin: Springer, 1986

    MATH  Google Scholar 

  8. Gubinelli M. Controlling rough paths. J Funct Anal, 2004, 216: 86–140

    Article  MathSciNet  Google Scholar 

  9. Gubinelli M, Imkeller P, Perkowski N. Paracontrolled distributions and singular PDEs. Forum Math, 2015, 3: e6

    Article  MathSciNet  Google Scholar 

  10. Hairer M. Solving the KPZ equation. Ann of Math (2), 2013, 178: 559–664

    Article  MathSciNet  Google Scholar 

  11. Hairer M. A theory of regularity structures. Invent Math, 2014, 198: 269–504

    Article  MathSciNet  Google Scholar 

  12. Hairer M, Pardoux E. A Wong-Zakai theorem for stochastic PDEs. J Math Soc Japan, 2015, 67: 1551–1604

    Article  MathSciNet  Google Scholar 

  13. Hairer M, Ryser M D, Weber H. Triviality of the 2D stochastic Allen-Cahn equation. Electron J Probab, 2012, 17: 39

    MathSciNet  MATH  Google Scholar 

  14. Hairer M, Shen H. The dynamical sine-Gordon model. Comm Math Phys, 2016, 341: 933–989

    Article  MathSciNet  Google Scholar 

  15. Kardar M, Parisi G, Zhang Y-C. Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56: 889–892

    Article  Google Scholar 

  16. Ledoux M, Qian Z, Zhang T. Large deviations and support theorem for diffusion processes via rough paths. Stochastic Process Appl, 2002, 102: 265–283

    Article  MathSciNet  Google Scholar 

  17. Lyons T J. Differential equations driven by rough signals. Rev Mat Iberoamericana, 1998, 14: 215–310

    Article  MathSciNet  Google Scholar 

  18. Nakayama T. Support theorem for mild solutions of SDE’s in Hilbert spaces. J Math Sci Univ Tokyo, 2004, 11: 245–311

    MathSciNet  MATH  Google Scholar 

  19. Röckner M, Zhu R-C, Zhu X-C. Restricted Markov uniqueness for the stochastic quantization of P(Φ)2 and its applications. J Funct Anal, 2017, 272: 4263–4303

    Article  MathSciNet  Google Scholar 

  20. Triebel H. Theory of Function Spaces. Basel: Birkhäuser, 1983

    Book  Google Scholar 

  21. Triebel H. Theory of Function Spaces III. Basel: Birkhäuser, 2006

    MATH  Google Scholar 

  22. Twardowska K. Wong-Zakai approximations for stochastic differential equations. Acta Appl Math, 1996, 43: 317–359

    Article  MathSciNet  Google Scholar 

  23. Wong E, Zakai M. On the convergence of ordinary integrals to stochastic integrals. Ann Math Statist, 1965, 36: 1560–1564

    Article  MathSciNet  Google Scholar 

  24. Wong E, Zakai M. On the relation between ordinary and stochastic differential equations. Internat J Engrg Sci, 1965, 3: 213–229

    Article  MathSciNet  Google Scholar 

  25. Zhu R-C, Zhu X-C. Three dimensional Navier-Stokes equation driven by space-time white noise. J Differential Equations, 2015, 259: 4443–4508

    Article  MathSciNet  Google Scholar 

  26. Zhu R-C, Zhu X-C. Approximating three-dimensional Navier-Stokes equations driven by space-time white noise. Infin Dimens Anal Quantum Probab Relat Top, 2017, 20: 1750020

    Article  MathSciNet  Google Scholar 

  27. Zhu R-C, Zhu X-C. Lattice approximation to the dynamical \(\Phi_3^4\) model. Ann Probab, 2018, 46: 397–455

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11671035 and 11771037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangchan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Zhu, X. Piecewise linear approximation for the dynamical \(\Phi_3^4\) model. Sci. China Math. 63, 381–410 (2020). https://doi.org/10.1007/s11425-017-9269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9269-1

Keywords

MSC(2010)

Navigation