Skip to main content
Log in

Convergence of ground state solutions for nonlinear Schrödinger equations on graphs

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the nonlinear Schrödinger equation -Δu + (λa(x) + 1)u = |u|p-1u on a locally finite graph G = (V,E). We prove via the Nehari method that if a(x) satisfies certain assumptions, for any λ > 1, the equation admits a ground state solution uλ. Moreover, as λ → 1, the solution uλ converges to a solution of the Dirichlet problem -Δu+u = |u|p-1u which is defined on the potential well Ω. We also provide a numerical experiment which solves the equation on a finite graph to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C O, Souto M A S. On the existence and concentration behavior of ground state solutions for a class of problems with critical growth. Commun Pure Appl Anal, 2002, 1: 417–431

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51: 366–384

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer F, Horn P, Lin Y, et al. Li-Yau inequality on graphs. J Differential Geom, 2015, 99: 359–405

    Article  MathSciNet  MATH  Google Scholar 

  4. Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao D M. Nontrivial solution of semilinear equations with critical exponent in R2. Comm Partial Differential Equations, 1992, 17: 407–435

    Article  MathSciNet  Google Scholar 

  6. Chakik A E, Elmoataz A, Desquesnes X. Mean curvature flow on graphs for image and manifold restoration and enhancement. Signal Processing, 2014, 105: 449–463

    Article  Google Scholar 

  7. Chung Y S, Lee Y S, Chung S Y. Extinction and positivity of the solutions of the heat equations with absorption on networks. J Math Anal Appl, 2011, 380: 642–652

    Article  MathSciNet  MATH  Google Scholar 

  8. Clapp M, Ding Y H. Positive solutions of a Schrödinger equation with critical nonlinearity. Z Angew Math Phys, 2004, 55: 592–605

    Article  MathSciNet  MATH  Google Scholar 

  9. Curtis E, Morrow J. Determining the resistors in a network. SIAM J Appl Math, 1990, 50: 918–930

    Article  MathSciNet  MATH  Google Scholar 

  10. Desquesnes X, Elmoataz A, Lézoray O. Eikonal equation adaptation on weighted graphs: Fast geometric diffusion process for local and non-local image and data processing. J Math Imaging Vision, 2013, 46: 238–257

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding Y H, Tanaka K. Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscripta Math, 2003, 112: 109–135

    Article  MathSciNet  MATH  Google Scholar 

  12. Elmoataz A, Desquesnes X, Lézoray O. Non-local morphological PDEs and p-Laplacian equation on graphs with applications in image processing and machine learning. IEEE J Sel Top Signal Process, 2012, 6: 764–779

    Article  MATH  Google Scholar 

  13. Elmoataz A, Lézoray O, Bougleux S. Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. IEEE Trans Image Process, 2008, 17: 1047–1060

    Article  MathSciNet  MATH  Google Scholar 

  14. Elmoataz A, Lozes F, Toutain M. Nonlocal PDEs on graphs: From Tug-of-War games to unified interpolation on images and point clouds. J Math Imaging Vision, 2017, 57: 381–401

    Article  MathSciNet  MATH  Google Scholar 

  15. Elmoataz A, Toutain M, Tenbrinck D. On the p-Laplacian and ∞-Laplacian on graphs with applications in image and data processing. SIAM J Imaging Sci, 2015, 8: 2412–2451

    Article  MathSciNet  MATH  Google Scholar 

  16. Grigor’yan A, Lin Y, Yang Y Y. Yamabe type equations on graphs. J Differential Equations, 2016, 261: 4924–4943

    Article  MathSciNet  MATH  Google Scholar 

  17. Grigor’yan A, Lin Y, Yang Y Y. Kazdan-Warner equation on graph. Calc Var Partial Differential Equations, 2016, 55: 92

    Article  MathSciNet  MATH  Google Scholar 

  18. Grigor’yan A, Lin Y, Yang Y Y. Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci China Math, 2017, 60: 1311–1324

    Article  MathSciNet  MATH  Google Scholar 

  19. He X M, Zou W M. Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. J Math Phys, 2012, 53: 1–19

    Article  MATH  Google Scholar 

  20. Horn P, Lin Y, Liu S, et al. Volume doubling, Poincare inequality and Gaussian heat kernel estimate for non-negatively curved graphs. J Reine Angew Math, 2017, doi:10.1515/crelle-2017–0038

    Google Scholar 

  21. Huang X P. On uniqueness class for a heat equation on graphs. J Math Anal Appl, 2012, 393: 377–388

    Article  MathSciNet  MATH  Google Scholar 

  22. Li Y Q, Wang Z Q, Zeng J. Ground states of nonlinear Schrödinger equations with potentials. Ann Inst H Poincaré Anal Non Linéaire, 2006, 23: 829–837

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin Y, Wu Y T. On-diagonal lower estimate of heat kernels on graphs. J Math Anal Appl, 2017, 456: 1040–1048

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin Y, Wu Y T. The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc Var Partial Differential Equations, 2017, 56: 102

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu W J, Chen K W, Yu J. Extinction and asymptotic behavior of solutions for the ω-heat equation on graphs with source and interior absorption. J Math Anal Appl, 2016, 435: 112–132

    Article  MathSciNet  MATH  Google Scholar 

  26. Nehari Z. On a class of nonlinear second-order differential equations. Trans Amer Math Soc, 1960, 95: 101–123

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43: 270–291

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang Z P, Zhou H S. Positive solutions for nonlinear Schrödinger equations with deepening potential well. J Eur Math Soc (JEMS), 2009, 11: 545–573

    Article  MathSciNet  MATH  Google Scholar 

  29. Wojciechowski R. Heat kernel and essential spectrum of infinite graphs. Indiana Univ Math J, 2009, 58: 1419–1441

    Article  MathSciNet  MATH  Google Scholar 

  30. Xin Q, Xu L, Mu C. Blow-up for the ω-heat equation with Dirichlet boundary conditions and a reaction term on graphs. Appl Anal, 2014, 93: 1691–1701

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang Y Y. Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space. J Funct Anal, 2012, 262: 1679–1704

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang Y Y, Zhao L. A class of Adams-Fontana type inequalities and related functionals on manifolds. NoDEA Nonlinear Differential Equations Appl, 2010, 17: 119–135

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao L, Chang Y Y. Min-max level estimate for a singular quasilinear polyharmonic equation in R2m. J Differential Equations, 2013, 254: 2434–2464

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao L, Zhang N. Existence of solutions for a higher order Kirchhoff type problem with exponetial critical growth. Nonlinear Anal, 2016, 132: 214–226

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Funding of Beijing Philosophy and Social Science (Grant No. 15JGC153) and the Ministry of Education Project of Humanities and Social Sciences (Grant No. 16YJCZH148). The second author was supported by the Fundamental Research Funds for the Central Universities. Both of the authors were supported by the Ministry of Education Project of Key Research Institute of Humanities and Social Sciences at Universities (Grant No. 16JJD790060). The authors thank members of Data Lighthouse for their helpful conversations and valuable suggestions. The authors are also thankful for the referees′ detailed and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zhao, L. Convergence of ground state solutions for nonlinear Schrödinger equations on graphs. Sci. China Math. 61, 1481–1494 (2018). https://doi.org/10.1007/s11425-017-9254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9254-7

Keywords

MSC(2010)

Navigation