Skip to main content

Holographic software for quantum networks

An Erratum to this article was published on 23 March 2018

This article has been updated

Abstract

We introduce a pictorial approach to quantum information, called holographic software. Our software captures both algebraic and topological aspects of quantum networks. It yields a bi-directional dictionary to translate between a topological approach and an algebraic approach. Using our software, we give a topological simulation for quantum networks. The string Fourier transform (SFT) is our basic tool to transform product states into states with maximal entanglement entropy. We obtain a pictorial interpretation of Fourier transformation, of measurements, and of local transformations, including the n-qudit Pauli matrices and their representation by Jordan-Wigner transformations. We use our software to discover interesting new protocols for multipartite communication. In summary, we build a bridge linking the theory of planar para algebras with quantum information.

Change history

  • 23 March 2018

    The article Holographic software for quantum networks, written by Arthur Jaffe, Zhengwei Liu & Alex Wozniakowski, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 14/02/2018 without open access. With the author(s)’ decision to opt for Open Choice the copyright of the article changed in March 2018 to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The original article has been corrected.

References

  1. Aaronson S, Gottesman D. Improved simulation of stabilizer circuits. Phys Rev Lett, 2003, 91: 147902

    Article  Google Scholar 

  2. Abramsky S, Coecke B. A categorical semantics of quantum protocols. In: LICS 2004 Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science. New York: IEEE, 2004, 415–425

    Chapter  Google Scholar 

  3. Aspelmeyer M, Jennewein T, Pfennigbauer M, et al. Long-distance quantum communication with entangled photons using satellites. In: IEEE Journal of Selected Topics in Quantum Electronics, vol. 9. New York: IEEE, 2003, 1541–1551

    Article  Google Scholar 

  4. Atiyah M F. Topological quantum field theories. Publ Math Inst Hautes Études Sci, 1988, 68: 175–186

    MathSciNet  Article  MATH  Google Scholar 

  5. Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys Rev A (3), 1995, 52: 3457–3467

    Article  Google Scholar 

  6. Baxter R. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain I, II, III. I: Ann Phys (8), 1973, 76: 1–24; II: Ann Phys (8), 1973, 76: 25–47; III: Ann Phys (8), 1973, 76: 48–71

    MATH  Google Scholar 

  7. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    MathSciNet  Article  MATH  Google Scholar 

  8. Biamonte J, Clark S, Jaksch D. Categorical tensor network states. AIP Advances, 2011, 1: 042172

    Article  Google Scholar 

  9. Bombin H, Martin-Delgado M A. Topological computation without braiding. Phys Rev Lett, 2007, 98: 160502

    MathSciNet  Article  MATH  Google Scholar 

  10. Bose S, Vedral V, Knight P L. Multiparticle generalization of entanglement swapping. Phys Rev A (3), 1998, 57: 822–829

    Article  Google Scholar 

  11. Bremner M, Dawson C, Dodd J, et al. Practical scheme for quantum computation with any two-qubit entangling gate. Phys Rev Lett, 2002, 89: 247902

    Article  Google Scholar 

  12. Brylinski J L, BrylinskiR. Universal Quantum Gates. Mathematics of Quantum Computation. Boca Raton: Chapman & Hall/CRC, 2002

    Book  MATH  Google Scholar 

  13. Buerschaper O, Mombelli J, Christandl M, et al. A hierarchy of topological tensor network states. J Math Phys, 2013, 54: 012201

    MathSciNet  Article  MATH  Google Scholar 

  14. Campbell E, Anwar H, Browne D. Magic-state distillation in all prime dimensions using quantum Reed-Muller codes. Phys Rev X, 2012, 2: 041021

    Google Scholar 

  15. Coecke B, Kissinger A. Picturing Quantum Processes: A First Course in Quantum Theory and Pictorial Reasoning. Cambridge: Cambridge University Press, 2017

    Book  MATH  Google Scholar 

  16. Deutsch D. Quantum computational networks. Proc R Soc Lond Ser A Math Phys Eng Sci, 1989, 425: 73–90

    MathSciNet  Article  MATH  Google Scholar 

  17. Eisert J, Jacobs K, Papadopoulos P, et al. Optimal local implementation of nonlocal quantum gates. Phys Rev A (3), 2000, 62: 052317

    Article  Google Scholar 

  18. Farinholt J M. An ideal characterization of the Clifford operators. J Phys A, 2014, 47: 305303

    MathSciNet  Article  MATH  Google Scholar 

  19. Fateev V, Zamolodchikov A B. Self-dual solutions of the star-triangle relations in ZN-models. Phys Lett A, 1982, 92: 37–39

    MathSciNet  Article  Google Scholar 

  20. Feynman R. Simulating physics with computers. Internat J Theoret Phys, 1982, 21: 467–488

    MathSciNet  Article  Google Scholar 

  21. Freedman M H, Kitaev A, Larsen M J, et al. Topological quantum computation. Bull Amer Math Soc (NS), 2002, 40: 31–38

    MathSciNet  Article  MATH  Google Scholar 

  22. Freedman M H, Kitaev A, Wang Z. Simulation of topological field theories by quantum computers. Commun Math Phys, 2002, 227: 587–603

    MathSciNet  Article  MATH  Google Scholar 

  23. Fröhlich J. New super-selection sectors (‘Soliton-States’) in two-dimensional Bose quantum field models. Comm Math Phys, 1976, 47: 269–310

    MathSciNet  Article  Google Scholar 

  24. Fröhlich J. Statistics of Fields, the Yang-Baxter Equation, and the Theory of Knots and Link. Non-Perturbative Quantum Field Theory. New York: Plenum Press, 1988

    Google Scholar 

  25. Gottesman D. Stabilizer codes and quantum error correction. Thesis. ArXiv:9705.052, 1997

    Google Scholar 

  26. Gottesman D. Theory of fault-tolerant quantum computation. Phys Rev A (3), 1998, 57: 127–137

    Article  Google Scholar 

  27. Gottesman D. The Heisenberg representation of quantum computers. Talk at International Conference on Group Theoretic Methods in Physics. ArXiv:9807.006, 1998

    Google Scholar 

  28. Gottesman D, Chuang I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 1999, 402: 390–393

    Article  Google Scholar 

  29. Greenberger D M, Horne M A, Zeilinger A. Going Beyond Bell’s Theorem. Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Fundamental Theories of Physics, vol. 37. Heidelberg: Springer, 1989

  30. Hu S, Cui W-X, Wang D-Y, et al. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Nature, 2015, 5: 11321

    Google Scholar 

  31. Huelga S F, Vaccaro J A, Che es A, et al. Quantum remote control: teleportation of unitary operations. Phys Rev A (3), 2001, 63: 042303

    Article  MATH  Google Scholar 

  32. Hutter A, Loss D. Quantum computing with parafermions. Phys Rev B, 2016, 93: 125105

    Article  Google Scholar 

  33. Jaffe A, Janssens B. Characterization of re ection positivity. Comm Math Phys, 2016, 346: 1021–1050

    MathSciNet  Article  MATH  Google Scholar 

  34. Jaffe A, Liu Z. Planar para algebras, re ection positivity. Comm Math Phys, 2017, 352: 95–133

    MathSciNet  Article  MATH  Google Scholar 

  35. Jaffe A. Liu Z. A mathematical picture language program. Proc Natl Acad Sci, doi:10.1073/pnas.1710707114, arXiv: 1708.02604, 2017

    Google Scholar 

  36. Jaffe A, Liu Z, Wozniakowski A. Qudit isotopy. ArXiv:1602.02671, 2016

    Google Scholar 

  37. Jaffe A, Liu Z, Wozniakowski A. Compressed teleportation. ArXiv:1605.00321, 2016

    Google Scholar 

  38. Jaffe A, Liu Z, Wozniakowski A. Constructive simulation and topological design of protocols. New J Phys, 2017, 19: 063016

    Article  Google Scholar 

  39. Jaffe A, Pedrocchi F L. Re ection positivity for parafermions. Comm Math Phys, 2015, 337: 455–472

    MathSciNet  Article  MATH  Google Scholar 

  40. Jennings D, Brockt C, Haegeman J, et al. Continuum tensor network field states, path integral representations and spatial symmetries. New J Phys, 2015, 17: 063039

    Article  Google Scholar 

  41. Jiang C, Liu Z, Wu J. Noncommutative uncertainty principles. J Funct Anal, 2016, 270: 264–311

    MathSciNet  Article  MATH  Google Scholar 

  42. Jiang C, Liu Z, Wu J. Block maps and Fourier analysis. ArXiv:1706.03551, 2017

    Google Scholar 

  43. Jones V F R. Index for subfactors. Invent Math, 1983, 72: 1–25

    MathSciNet  Article  MATH  Google Scholar 

  44. Jones V F R. A polynomial invariant for knots via von Neumann algebras. Bull Amer Math Soc, 1985, 12: 103–111

    MathSciNet  Article  MATH  Google Scholar 

  45. Jones V F R. Hecke algebra representations of braid groups and link polynomials. Ann of Math (2), 1987, 126: 335–388

    MathSciNet  Article  MATH  Google Scholar 

  46. Jones V F R. Baxterization. Internat J Modern Phys A, 1991, 6: 2035–2043

    MathSciNet  Article  MATH  Google Scholar 

  47. Jones V F R. Planar algebras, I. New Zealand J Math, arXiv:math/9909027, 1998

    Google Scholar 

  48. Kauffman L, Lomonaco J S. Comparing quantum entanglement and topological entanglement. New J Phys, 2002, 4: 1–73

    MathSciNet  Article  Google Scholar 

  49. Kauffman L, Lomonaco J S. Braiding operators are universal quantum gates. New J Phys, 2004, 6: 1–134

    MathSciNet  Article  Google Scholar 

  50. Kimble H J. The quantum internet. Nature, 2008, 453: 1023–1030

    Article  Google Scholar 

  51. Kitaev A. Fault-tolerant quantum computation by anyons. Ann Phys (8), 2003, 303: 2–30

    MathSciNet  Article  MATH  Google Scholar 

  52. Lafont Y. Towards an algebraic theory of Boolean circuits. J Pure Appl Algebra, 2003, 184: 257–310

    MathSciNet  Article  MATH  Google Scholar 

  53. Levin M, Wen X-G. String-net condensation: A physical mechanism for topological phases. Phys Rev B, 2005, 71: 045110

    Article  Google Scholar 

  54. Liu Z, Jaffe A,Wozniakowski A. Quon 3D language for quantum information. Proc Natl Acad Sci, 2017, 114: 2497–2502

    MathSciNet  Article  Google Scholar 

  55. Liu Z, Wang S, Wu J. Young’s inequality for locally compact quantum groups. J Operator Theory, in press, arX-iv:1611.04630, 2016

    Google Scholar 

  56. Luo S, Wang A M. Remote implementations of partially unknown quantum operations and its entanglement costs. Http://arxiv.org/pdf/1301.5866.pdf, 2013

    Google Scholar 

  57. Ma X-S, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489: 269–273

    Article  Google Scholar 

  58. Manin Y. Computable and Uncomputable (in Russian). Moscow: Sovetskoye Radio, 1980

    Google Scholar 

  59. Manin Y. Classical computing, quantum computing, and Shor’s factoring algorithm. Astérisque, 2000, 266: 375–404

    MathSciNet  MATH  Google Scholar 

  60. Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Rev Modern Phys, 2008, 80: 1083–1159

    MathSciNet  Article  MATH  Google Scholar 

  61. Nielsen M A, Chuang I L. Programmable quantum gate arrays. Phys Rev Lett, 1997, 79: 321–324

    MathSciNet  Article  MATH  Google Scholar 

  62. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2010

    Book  MATH  Google Scholar 

  63. Ocneanu A. Quantized groups, string algebras and Galois theory for algebras. In: Operator Algebras and Applications, vol. 2, London Mathematical Society Lecture Note Series, vol. 136. Cambridge: Cambridge University Press, 1988, 119–172

    Google Scholar 

  64. Ogburn R W, Preskill J. Topological quantum computation quantum computing and quantum communications. In: Lecture Notes in Computer Science, vol. 1509. Berlin-Heidelberg: Springer, 1999, 341–356

    Article  MATH  Google Scholar 

  65. Pan J-W. Quantum science satellite. Chinese J Space Sci, 2014, 34: 547–549

    Google Scholar 

  66. Penrose R. Application of negative dimension tensors. In: Combinatorial Mathematics and Its Applications. New York: Academic Press, 1971, 221–244

    Google Scholar 

  67. Ren J-G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549: 70–73

    Article  Google Scholar 

  68. Reshetikhin N, Turaev V. Invariants of 3-manifolds via link polynomials and quantum groups. Invent Math, 1991, 103: 547–597

    MathSciNet  Article  MATH  Google Scholar 

  69. Reznik B, Aharonov Y, Groisman B. Remote operations and interactions for systems of arbitrary-dimensional hilbert space: state-operator approach. Phys Rev A (3), 2002, 65: 032312

    Article  Google Scholar 

  70. Schliemann J, Ignacio Cirac J, Kuś M, et al. Quantum correlations in two-fermion systems. Phys Rev A (3), 2001, 64: 022303

    Article  Google Scholar 

  71. Schliemann J, Loss D, MacDonald A H. Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots. Phys Rev B, 2001, 63: 085311

    Article  Google Scholar 

  72. Sørensen A, Mølmer K. Error-free quantum communication through noisy channels. Phys Rev A (3), 1998, 58: 2745–2749

    Article  Google Scholar 

  73. van Loock P, Braunstein S L. Multipartite entanglement for continuous variables: A quantum teleportation network. Phys Rev Lett, 2000, 84: 3482–3485

    Article  Google Scholar 

  74. Van Meter R. Quantum Networking. Hoboken: John Wiley & Sons, 2014

    Book  MATH  Google Scholar 

  75. Vidal G. Efficient classical simulation of slightly entangled quantum computations. Phys Rev A (3), 2004, 70: 052328

    Article  Google Scholar 

  76. Witten E. Topological quantum field theory. Comm Math Phys, 1988, 117: 353–386

    MathSciNet  Article  MATH  Google Scholar 

  77. Yang C N. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys Rev Lett, 1967, 19: 1312–1315

    MathSciNet  Article  MATH  Google Scholar 

  78. Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356: 1140–1144

    Article  Google Scholar 

  79. Yin J, Ren J-G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488: 185–188

    Article  Google Scholar 

  80. Yu L, Griffiths R B, Cohen S M. Efficient implementation of bipartite nonlocal unitary gates using prior entanglement and classical communication. Phys Rev A (3), 2010, 81: 062315

    Article  Google Scholar 

  81. Zhao N B, Wang A M. Hybrid protocol of remote implementations of quantum operations. Phys Rev A (3), 2007, 76: 062317

    Article  Google Scholar 

  82. Zhou X, Leung D W, Chuang I L. Methodology for quantum logic gate construction. Phys Rev A (3), 2000, 62: 052316

    Article  Google Scholar 

  83. Zukowski M, Zeilinger A, Horne M A, et al. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Templeton Religion Trust (Grant Nos. TRT0080 and TRT0159). The authors are grateful for hospitality at the Research Institute for Mathematics (FIM) of the ETH-Zurich, at the Max Planck Institute for Mathematics in Bonn, at the Hausdorff Institute for Mathematics in Bonn, at the Isaac Newton Mathematical Institute in Cambridge, UK, and at the Mathematical Research Institute Oberwolfach, where they did part of this work. The authors thank Erwin Engeler, Klaus Hepp, Daniel Loss, Renato Renner, and Matthias Troyer for helpful discussions. The authors are also grateful to Bob Coecke for sharing a copy of [15], before its publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Jaffe.

Additional information

The original version of this article was revised due to a retrospective Open Access order.

A correction to this article is available at https://doi.org/10.1007/s11425-018-9277-3

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

This article is published with open access at Springerlink.com, corrected publication 03/2018

The original article has been corrected.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaffe, A., Liu, Z. & Wozniakowski, A. Holographic software for quantum networks. Sci. China Math. 61, 593–626 (2018). https://doi.org/10.1007/s11425-017-9207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9207-3

Keywords

  • quantum information
  • picture language
  • string Fourier transform
  • Clifford gate
  • multipartite entanglement
  • quantum protocol

MSC(2010)

  • 81P45
  • 94A15
  • 90B18
  • 94A05
  • 94A17