Aaronson S, Gottesman D. Improved simulation of stabilizer circuits. Phys Rev Lett, 2003, 91: 147902
Article
Google Scholar
Abramsky S, Coecke B. A categorical semantics of quantum protocols. In: LICS 2004 Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science. New York: IEEE, 2004, 415–425
Chapter
Google Scholar
Aspelmeyer M, Jennewein T, Pfennigbauer M, et al. Long-distance quantum communication with entangled photons using satellites. In: IEEE Journal of Selected Topics in Quantum Electronics, vol. 9. New York: IEEE, 2003, 1541–1551
Article
Google Scholar
Atiyah M F. Topological quantum field theories. Publ Math Inst Hautes Études Sci, 1988, 68: 175–186
MathSciNet
Article
MATH
Google Scholar
Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys Rev A (3), 1995, 52: 3457–3467
Article
Google Scholar
Baxter R. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain I, II, III. I: Ann Phys (8), 1973, 76: 1–24; II: Ann Phys (8), 1973, 76: 25–47; III: Ann Phys (8), 1973, 76: 48–71
MATH
Google Scholar
Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899
MathSciNet
Article
MATH
Google Scholar
Biamonte J, Clark S, Jaksch D. Categorical tensor network states. AIP Advances, 2011, 1: 042172
Article
Google Scholar
Bombin H, Martin-Delgado M A. Topological computation without braiding. Phys Rev Lett, 2007, 98: 160502
MathSciNet
Article
MATH
Google Scholar
Bose S, Vedral V, Knight P L. Multiparticle generalization of entanglement swapping. Phys Rev A (3), 1998, 57: 822–829
Article
Google Scholar
Bremner M, Dawson C, Dodd J, et al. Practical scheme for quantum computation with any two-qubit entangling gate. Phys Rev Lett, 2002, 89: 247902
Article
Google Scholar
Brylinski J L, BrylinskiR. Universal Quantum Gates. Mathematics of Quantum Computation. Boca Raton: Chapman & Hall/CRC, 2002
Book
MATH
Google Scholar
Buerschaper O, Mombelli J, Christandl M, et al. A hierarchy of topological tensor network states. J Math Phys, 2013, 54: 012201
MathSciNet
Article
MATH
Google Scholar
Campbell E, Anwar H, Browne D. Magic-state distillation in all prime dimensions using quantum Reed-Muller codes. Phys Rev X, 2012, 2: 041021
Google Scholar
Coecke B, Kissinger A. Picturing Quantum Processes: A First Course in Quantum Theory and Pictorial Reasoning. Cambridge: Cambridge University Press, 2017
Book
MATH
Google Scholar
Deutsch D. Quantum computational networks. Proc R Soc Lond Ser A Math Phys Eng Sci, 1989, 425: 73–90
MathSciNet
Article
MATH
Google Scholar
Eisert J, Jacobs K, Papadopoulos P, et al. Optimal local implementation of nonlocal quantum gates. Phys Rev A (3), 2000, 62: 052317
Article
Google Scholar
Farinholt J M. An ideal characterization of the Clifford operators. J Phys A, 2014, 47: 305303
MathSciNet
Article
MATH
Google Scholar
Fateev V, Zamolodchikov A B. Self-dual solutions of the star-triangle relations in ZN-models. Phys Lett A, 1982, 92: 37–39
MathSciNet
Article
Google Scholar
Feynman R. Simulating physics with computers. Internat J Theoret Phys, 1982, 21: 467–488
MathSciNet
Article
Google Scholar
Freedman M H, Kitaev A, Larsen M J, et al. Topological quantum computation. Bull Amer Math Soc (NS), 2002, 40: 31–38
MathSciNet
Article
MATH
Google Scholar
Freedman M H, Kitaev A, Wang Z. Simulation of topological field theories by quantum computers. Commun Math Phys, 2002, 227: 587–603
MathSciNet
Article
MATH
Google Scholar
Fröhlich J. New super-selection sectors (‘Soliton-States’) in two-dimensional Bose quantum field models. Comm Math Phys, 1976, 47: 269–310
MathSciNet
Article
Google Scholar
Fröhlich J. Statistics of Fields, the Yang-Baxter Equation, and the Theory of Knots and Link. Non-Perturbative Quantum Field Theory. New York: Plenum Press, 1988
Google Scholar
Gottesman D. Stabilizer codes and quantum error correction. Thesis. ArXiv:9705.052, 1997
Google Scholar
Gottesman D. Theory of fault-tolerant quantum computation. Phys Rev A (3), 1998, 57: 127–137
Article
Google Scholar
Gottesman D. The Heisenberg representation of quantum computers. Talk at International Conference on Group Theoretic Methods in Physics. ArXiv:9807.006, 1998
Google Scholar
Gottesman D, Chuang I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 1999, 402: 390–393
Article
Google Scholar
Greenberger D M, Horne M A, Zeilinger A. Going Beyond Bell’s Theorem. Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Fundamental Theories of Physics, vol. 37. Heidelberg: Springer, 1989
Hu S, Cui W-X, Wang D-Y, et al. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Nature, 2015, 5: 11321
Google Scholar
Huelga S F, Vaccaro J A, Che es A, et al. Quantum remote control: teleportation of unitary operations. Phys Rev A (3), 2001, 63: 042303
Article
MATH
Google Scholar
Hutter A, Loss D. Quantum computing with parafermions. Phys Rev B, 2016, 93: 125105
Article
Google Scholar
Jaffe A, Janssens B. Characterization of re ection positivity. Comm Math Phys, 2016, 346: 1021–1050
MathSciNet
Article
MATH
Google Scholar
Jaffe A, Liu Z. Planar para algebras, re ection positivity. Comm Math Phys, 2017, 352: 95–133
MathSciNet
Article
MATH
Google Scholar
Jaffe A. Liu Z. A mathematical picture language program. Proc Natl Acad Sci, doi:10.1073/pnas.1710707114, arXiv: 1708.02604, 2017
Google Scholar
Jaffe A, Liu Z, Wozniakowski A. Qudit isotopy. ArXiv:1602.02671, 2016
Google Scholar
Jaffe A, Liu Z, Wozniakowski A. Compressed teleportation. ArXiv:1605.00321, 2016
Google Scholar
Jaffe A, Liu Z, Wozniakowski A. Constructive simulation and topological design of protocols. New J Phys, 2017, 19: 063016
Article
Google Scholar
Jaffe A, Pedrocchi F L. Re ection positivity for parafermions. Comm Math Phys, 2015, 337: 455–472
MathSciNet
Article
MATH
Google Scholar
Jennings D, Brockt C, Haegeman J, et al. Continuum tensor network field states, path integral representations and spatial symmetries. New J Phys, 2015, 17: 063039
Article
Google Scholar
Jiang C, Liu Z, Wu J. Noncommutative uncertainty principles. J Funct Anal, 2016, 270: 264–311
MathSciNet
Article
MATH
Google Scholar
Jiang C, Liu Z, Wu J. Block maps and Fourier analysis. ArXiv:1706.03551, 2017
Google Scholar
Jones V F R. Index for subfactors. Invent Math, 1983, 72: 1–25
MathSciNet
Article
MATH
Google Scholar
Jones V F R. A polynomial invariant for knots via von Neumann algebras. Bull Amer Math Soc, 1985, 12: 103–111
MathSciNet
Article
MATH
Google Scholar
Jones V F R. Hecke algebra representations of braid groups and link polynomials. Ann of Math (2), 1987, 126: 335–388
MathSciNet
Article
MATH
Google Scholar
Jones V F R. Baxterization. Internat J Modern Phys A, 1991, 6: 2035–2043
MathSciNet
Article
MATH
Google Scholar
Jones V F R. Planar algebras, I. New Zealand J Math, arXiv:math/9909027, 1998
Google Scholar
Kauffman L, Lomonaco J S. Comparing quantum entanglement and topological entanglement. New J Phys, 2002, 4: 1–73
MathSciNet
Article
Google Scholar
Kauffman L, Lomonaco J S. Braiding operators are universal quantum gates. New J Phys, 2004, 6: 1–134
MathSciNet
Article
Google Scholar
Kimble H J. The quantum internet. Nature, 2008, 453: 1023–1030
Article
Google Scholar
Kitaev A. Fault-tolerant quantum computation by anyons. Ann Phys (8), 2003, 303: 2–30
MathSciNet
Article
MATH
Google Scholar
Lafont Y. Towards an algebraic theory of Boolean circuits. J Pure Appl Algebra, 2003, 184: 257–310
MathSciNet
Article
MATH
Google Scholar
Levin M, Wen X-G. String-net condensation: A physical mechanism for topological phases. Phys Rev B, 2005, 71: 045110
Article
Google Scholar
Liu Z, Jaffe A,Wozniakowski A. Quon 3D language for quantum information. Proc Natl Acad Sci, 2017, 114: 2497–2502
MathSciNet
Article
Google Scholar
Liu Z, Wang S, Wu J. Young’s inequality for locally compact quantum groups. J Operator Theory, in press, arX-iv:1611.04630, 2016
Google Scholar
Luo S, Wang A M. Remote implementations of partially unknown quantum operations and its entanglement costs. Http://arxiv.org/pdf/1301.5866.pdf, 2013
Google Scholar
Ma X-S, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489: 269–273
Article
Google Scholar
Manin Y. Computable and Uncomputable (in Russian). Moscow: Sovetskoye Radio, 1980
Google Scholar
Manin Y. Classical computing, quantum computing, and Shor’s factoring algorithm. Astérisque, 2000, 266: 375–404
MathSciNet
MATH
Google Scholar
Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Rev Modern Phys, 2008, 80: 1083–1159
MathSciNet
Article
MATH
Google Scholar
Nielsen M A, Chuang I L. Programmable quantum gate arrays. Phys Rev Lett, 1997, 79: 321–324
MathSciNet
Article
MATH
Google Scholar
Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2010
Book
MATH
Google Scholar
Ocneanu A. Quantized groups, string algebras and Galois theory for algebras. In: Operator Algebras and Applications, vol. 2, London Mathematical Society Lecture Note Series, vol. 136. Cambridge: Cambridge University Press, 1988, 119–172
Google Scholar
Ogburn R W, Preskill J. Topological quantum computation quantum computing and quantum communications. In: Lecture Notes in Computer Science, vol. 1509. Berlin-Heidelberg: Springer, 1999, 341–356
Article
MATH
Google Scholar
Pan J-W. Quantum science satellite. Chinese J Space Sci, 2014, 34: 547–549
Google Scholar
Penrose R. Application of negative dimension tensors. In: Combinatorial Mathematics and Its Applications. New York: Academic Press, 1971, 221–244
Google Scholar
Ren J-G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549: 70–73
Article
Google Scholar
Reshetikhin N, Turaev V. Invariants of 3-manifolds via link polynomials and quantum groups. Invent Math, 1991, 103: 547–597
MathSciNet
Article
MATH
Google Scholar
Reznik B, Aharonov Y, Groisman B. Remote operations and interactions for systems of arbitrary-dimensional hilbert space: state-operator approach. Phys Rev A (3), 2002, 65: 032312
Article
Google Scholar
Schliemann J, Ignacio Cirac J, Kuś M, et al. Quantum correlations in two-fermion systems. Phys Rev A (3), 2001, 64: 022303
Article
Google Scholar
Schliemann J, Loss D, MacDonald A H. Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots. Phys Rev B, 2001, 63: 085311
Article
Google Scholar
Sørensen A, Mølmer K. Error-free quantum communication through noisy channels. Phys Rev A (3), 1998, 58: 2745–2749
Article
Google Scholar
van Loock P, Braunstein S L. Multipartite entanglement for continuous variables: A quantum teleportation network. Phys Rev Lett, 2000, 84: 3482–3485
Article
Google Scholar
Van Meter R. Quantum Networking. Hoboken: John Wiley & Sons, 2014
Book
MATH
Google Scholar
Vidal G. Efficient classical simulation of slightly entangled quantum computations. Phys Rev A (3), 2004, 70: 052328
Article
Google Scholar
Witten E. Topological quantum field theory. Comm Math Phys, 1988, 117: 353–386
MathSciNet
Article
MATH
Google Scholar
Yang C N. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys Rev Lett, 1967, 19: 1312–1315
MathSciNet
Article
MATH
Google Scholar
Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356: 1140–1144
Article
Google Scholar
Yin J, Ren J-G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488: 185–188
Article
Google Scholar
Yu L, Griffiths R B, Cohen S M. Efficient implementation of bipartite nonlocal unitary gates using prior entanglement and classical communication. Phys Rev A (3), 2010, 81: 062315
Article
Google Scholar
Zhao N B, Wang A M. Hybrid protocol of remote implementations of quantum operations. Phys Rev A (3), 2007, 76: 062317
Article
Google Scholar
Zhou X, Leung D W, Chuang I L. Methodology for quantum logic gate construction. Phys Rev A (3), 2000, 62: 052316
Article
Google Scholar
Zukowski M, Zeilinger A, Horne M A, et al. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290
Article
Google Scholar