Skip to main content
Log in

DG polynomial algebras and their homological properties

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce and study differential graded (DG for short) polynomial algebras. In brief, a DG polynomial algebra A is a connected cochain DG algebra such that its underlying graded algebra A# is a polynomial algebra \(\mathbb{K}[x_1, x_2, \ldots, x_{n}]\) with |xi| = 1, for any i ∈ {1, 2, ..., n}. We describe all possible differential structures on DG polynomial algebras; compute their DG automorphism groups; study their isomorphism problems; and show that they are all homologically smooth and Gorenstein DG algebras. Furthermore, it is proved that the DG polynomial algebra A is a Calabi-Yau DG algebra when its differential ∂A ≠ 0 and the trivial DG polynomial algebra (A, 0) is Calabi-Yau if and only if n is an odd integer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrezejewski W, Tralle A. Cohomology of some graded differential algebras. Fund Math, 1994, 145: 181–203

    MathSciNet  MATH  Google Scholar 

  2. Dwyer W G, Greenlees J P C, Iyengar S B. DG algebras with exterior homology. Bull Lond Math Soc, 2013, 45: 1235–1245

    Article  MathSciNet  MATH  Google Scholar 

  3. Félix Y, Halperin S, Thomas J C. Gorenstein spaces. Adv Math, 1988, 71: 92–112

    Article  MathSciNet  MATH  Google Scholar 

  4. Félix Y, Halperin S, Thomas J C. Rational Homotopy Theory. Graduate Texts in Mathematics, vol. 205. Berlin: Springer, 2000

    Google Scholar 

  5. Félix Y, Murillo A. Gorenstein graded algebras and the evaluation map. Canad Math Bull, 1998, 41: 28–32

    Article  MathSciNet  MATH  Google Scholar 

  6. Frankild A, Jørgensen P. Dualizing differential graded modules and Gorenstein differential graded algebras. J Lond Math Soc (2), 2003, 68: 288–306

    Article  MathSciNet  MATH  Google Scholar 

  7. Frankild A, Jørgensen P. Gorenstein differential graded algebras. Israel J Math, 2003, 135: 327–353

    Article  MathSciNet  MATH  Google Scholar 

  8. Frankild A, Jørgensen P. Homological properties of cochain differential graded algebras. J Algebra, 2008, 320: 3311–3326

    Article  MathSciNet  MATH  Google Scholar 

  9. Gammelin H. Gorenstein space with nonzero evaluation map. Trans Amer Math Soc, 1999, 351: 3433–3440

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginzberg V. Calabi-Yau algebra. ArXiv:math/0612139, 2006

    Google Scholar 

  11. He J W, Mao X F. Connected cochain DG algebras of Calabi-Yau dimension 0. Proc Amer Math Soc, 2017, 145: 937–953

    Article  MathSciNet  MATH  Google Scholar 

  12. He J W, Wu Q S. Koszul differential graded algebras and BGG correspondence. J Algebra, 2008, 320: 2934–2962

    Article  MathSciNet  MATH  Google Scholar 

  13. Jørgensen P. Auslander-Reiten theory over topological spaces. Comment Math Helv, 2004, 79: 160–182

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaledin D. Some remarks on formality in families. Mosc Math J, 2007, 7: 643–652

    Article  MathSciNet  MATH  Google Scholar 

  15. Lunts V A. Formality of DG algebras (after Kaledin). J Algebra, 2010, 323: 878–898

    Article  MathSciNet  MATH  Google Scholar 

  16. Mao X F. DG algebra structures on AS-regular algebras of dimension 2. Sci China Math, 2011, 54: 2235–2248

    Article  MathSciNet  MATH  Google Scholar 

  17. Mao X F, He J W. A special class of Koszul Calabi-Yau DG algebras (in Chinese). Acta Math Sinica Chin Ser, 2017, 60: 475–504

    MathSciNet  MATH  Google Scholar 

  18. Mao X F, He J W, Liu M, et al. Calabi-Yau properties of non-trivial Noetherian DG down-up algebras. J Algebra Appl, 2017, 17: 1850090

    Article  MATH  Google Scholar 

  19. Mao X F, Wu Q S. Homological invariants for connected DG algebras. Comm Algebra, 2008, 36: 3050–3072

    Article  MathSciNet  MATH  Google Scholar 

  20. Mao X F, Wu Q S. Compact DG modules and Gorenstein DG algebras. Sci China Ser A, 2009, 52: 648–676

    Article  MathSciNet  MATH  Google Scholar 

  21. Mao X F, Wu Q S. Cone length for DG modules and global dimension of DG algebras. Comm Algebra, 2011, 39: 1536–1562

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmidt K. Families of Auslander-Reiten theory for simply connected differential graded algebras. Math Z, 2010, 264: 43–62

    Article  MathSciNet  MATH  Google Scholar 

  23. Van den Bergh M M. Calabi-Yau algebras and superpotentials. Selecta Math NS, 2015, 21: 555–603

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11001056), the China Postdoctoral Science Foundation (Grant Nos. 20090450066 and 201003244), the Key Disciplines of Shanghai Municipality (Grant No. S30104) and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 12YZ031). The authors thank the referees for their careful reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Gao, X., Yang, Y. et al. DG polynomial algebras and their homological properties. Sci. China Math. 62, 629–648 (2019). https://doi.org/10.1007/s11425-017-9182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9182-1

Keywords

MSC(2010)

Navigation