Skip to main content
Log in

Data-based prediction and causality inference of nonlinear dynamics

  • Reviews
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict future dynamics. Due to the advances of modern technology, big data becomes increasingly accessible and consequently the problem of reconstructing systems from measured data or time series plays a central role in many scientic disciplines. In recent decades, nonlinear methods rooted in state space reconstruction have been developed, and they do not assume any model equations but can recover the dynamics purely from the measured time series data. In this review, the development of state space reconstruction techniques will be introduced and the recent advances in systems prediction and causality inference using state space reconstruction will be presented. Particularly, the cutting-edge method to deal with short-term time series data will be focused on. Finally, the advantages as well as the remaining problems in this field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona N, Marinazzo D, Stramaglia S. Radial basis function approach to nonlinear Granger causality of time series. Phys Rev E (3), 2004, 70: 056221

    Article  Google Scholar 

  2. Ansari-Asl K, Senhadji L, Bellanger J J, et al. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E (3), 2006, 74: 031916

    Article  MathSciNet  Google Scholar 

  3. Arnhold J, Grassberger P, Lehnertz K, et al. A robust method for detecting interdependences: Application to intracranially recorded EEG. Phys D, 1999, 134: 419–430

    Article  MATH  Google Scholar 

  4. Blinowska K J, Kuś R, Kamiński M. Granger causality and information flow in multivariate processes. Phys Rev E (3), 2004, 70: 050902

    Article  Google Scholar 

  5. Boyce M S. Population viability analysis. Annu Rev Ecol Syst, 1992, 23: 481–497

    Article  Google Scholar 

  6. Breakspear M, Terry J. Detection and description of non-linear interdependence in normal multichannel human EEG data. Clin Neurophysiol, 2002, 113: 735–753

    Article  Google Scholar 

  7. Brovelli A, Ding M, Ledberg A, et al. Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. Proc Natl Acad Sci USA, 2004, 101: 9849–9854

    Article  Google Scholar 

  8. Buzug T, Pster G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors. Phys Rev A (3), 1992, 45: 7073–7084

    Article  Google Scholar 

  9. Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59: 1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  10. Casdagli M. Nonlinear prediction of chaotic time series. Phys D, 1989, 35: 335–356

    Article  MathSciNet  MATH  Google Scholar 

  11. Casdagli M, Eubank S, Farmer J D, et al. State space reconstruction in the presence of noise. Phys D, 1991, 51: 52–98

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen L, Liu R, Liu Z, et al. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep, 2012, 2: 342

    Article  Google Scholar 

  13. David O, Guillemain I, Saillet S, et al. Identifying neural drivers with functional MRI: An electrophysiological validation. PLoS Biol, 2008, 6: e315

    Article  Google Scholar 

  14. de Jong H. Modeling and simulation of genetic regulatory systems: A literature review. J Comput Biol, 2002, 9: 67–103

    Article  Google Scholar 

  15. Deyle E R, Fogarty M, Hsieh C H, et al. Predicting climate effects on Pacic sardine. Proc Natl Acad Sci USA, 2013, 110: 6430–6435

    Article  Google Scholar 

  16. Deyle E R, Maher M C, Hernandez R D, et al. Global environmental drivers of in uenza. Proc Natl Acad Sci USA, 2016, 113: 13081–13086

    Article  Google Scholar 

  17. Deyle E R, Sugihara G. Generalized theorems for nonlinear state space reconstruction. PLoS ONE, 2011, 6: e18295

    Article  Google Scholar 

  18. Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev, 2014, 1: 293–314

    Article  Google Scholar 

  19. Farmer J, Sidorowich J. Predicting chaotic time series. Phys Rev Lett, 1987, 59: 845–848

    Article  MathSciNet  Google Scholar 

  20. Finkenstädt B, Kuhbier P. Forecasting nonlinear economic time series: A simple test to accompany the nearest neighbor approach. Empir Econ, 1995, 20: 243–263

    Article  Google Scholar 

  21. Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information. Phys Rev A (3), 1986, 33: 1134

    Article  MathSciNet  MATH  Google Scholar 

  22. Geweke J. Inference and causality in economic time series models. In: Handbook of Econometrics, vol. 2. Amsterdam: Elsevier, 1984, 1101–1144

    MATH  Google Scholar 

  23. Granger C. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969, 37: 424–438

    Article  MATH  Google Scholar 

  24. Granger C. Time series analysis, cointegration, and applications. Amer Econ Rev, 2004, 94: 421–425

    Article  Google Scholar 

  25. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Phys D, 1983, 9: 189–208

    Article  MathSciNet  MATH  Google Scholar 

  26. Grassberger P, Schreiber T, Schaffrath C. Nonlinear time sequence analysis. Int J Bifurcat Chaos, 1991, 1: 521–547

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo S, Wu J, Ding M, et al. Uncovering interactions in the frequency domain. PLoS Comput Biol, 2008, 4: e1000087

    Article  MathSciNet  Google Scholar 

  28. Haefner J W. Modeling Biological Systems: Principles and Applications. New York: Springer Science & Business Media, 2005

    MATH  Google Scholar 

  29. Hamilton J D. Time Series Analysis, vol. 2. Princeton: Princeton University Press, 1994

    Google Scholar 

  30. Hegger R, Kantz H, Schreiber T. Practical implementation of nonlinear time series methods: The TISEAN package. Chaos, 1999, 9: 413–435

    Article  MATH  Google Scholar 

  31. Heskamp L, Meel-van den Abeelen A, Lagro J, et al. Convergent cross mapping: A promising technique for cerebral autoregulation estimation. Int J Clin Neruosci Ment Health, 2014, 1: S20

    Article  Google Scholar 

  32. Hirata Y, Aihara K. Identifying hidden common causes from bivariate time series: A method using recurrence plots. Phys Rev E (3), 2010, 81: 016203

    Article  Google Scholar 

  33. Hirata Y, Amigó J M, Matsuzaka Y, et al. Detecting causality by combined use of multiple methods: Climate and brain examples. PLoS ONE, 2016, 11: e0158572

    Article  Google Scholar 

  34. Hlaváčková-Schindler K, Paluš M, Vejmelka, M, et al. Causality detection based on information-theoretic approaches in time series analysis. Phys Rep, 2007, 441: 1–46

    Article  Google Scholar 

  35. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol, 1990, 52: 25–71

    Article  Google Scholar 

  36. Huffaker R, Fearne A. Empirically testing for dynamic causality between promotions and sales beer promotions and sales in England. In: International European Forum on System Dynamics and Innovation in Food Networks. Innsbruck-Igls: International European Forum, 2014, 270–274

    Google Scholar 

  37. Ikeguchi T, Aihara K. Estimating correlation dimensions of biological time series with a reliable method. J Intell Fuzzy Syst, 1997, 5: 33–52

    Google Scholar 

  38. Jamšek J, Stefanovska A, McClintock P V. Nonlinear cardio-respiratory interactions revealed by time-phase bispectral analysis. Phys Med Biol, 2004, 49: 4407–4425

    Article  Google Scholar 

  39. Jiang J J, Huang Z G, Huang L, et al. Directed dynamical influence is more detectable with noise. Sci Rep, 2016, 6: 24088

    Article  Google Scholar 

  40. Judd K. Nonlinear state estimation, indistinguishable states, and the extended Kalman lter. Phys D, 2003, 183: 273–281

    Article  MathSciNet  MATH  Google Scholar 

  41. Kamiński M, Ding M, Truccolo W A, et al. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of signicance. Biol Cyber, 2001, 85: 145–157

    Article  MATH  Google Scholar 

  42. Kantz H, Schreiber T. Nonlinear Time Series Analysis, vol. 7. Cambridge: Cambridge University Press, 2004

    MATH  Google Scholar 

  43. Kember G, Fowler A. A correlation function for choosing time delays in phase portrait reconstructions. Phys Lett A, 1993, 179: 72–80

    Article  MathSciNet  Google Scholar 

  44. Kennel M B, Brown R, Abarbanel H D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A (3), 1992, 45: 3403–3411

    Article  Google Scholar 

  45. Kurths J, Ruzmaikin A. On forecasting the sunspot numbers. Sol Phys, 1990, 126: 407–410

    Article  Google Scholar 

  46. Lai Y C, David L, Hayden R. An upper bound for the proper delay time in chaotic time-series analysis. Phys Lett A, 1996, 218: 30–34

    Article  Google Scholar 

  47. Lai Y C, Lerner D. Effective scaling regime for computing the correlation dimension from chaotic time series. Phys D, 1998, 115: 1–18

    Article  MATH  Google Scholar 

  48. Le Van Quyen M, Martinerie J, Adam C, et al. Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy. Phys D, 1999, 127: 250–266

    Article  MATH  Google Scholar 

  49. Li Y, Chen L. Big biological data: Challenges and opportunities. Genomics Proteomics Bioinform, 2014, 12: 187–189

    Article  Google Scholar 

  50. Liebert W, Pawelzik K, Schuster H. Optimal embeddings of chaotic attractors from topological considerations. Europhys Lett EPL, 1991, 14: 521–526

    Article  MathSciNet  Google Scholar 

  51. Liebert W, Schuster H. Proper choice of the time delay for the analysis of chaotic time series. Phys Lett A, 1989, 142: 107–111

    Article  MathSciNet  Google Scholar 

  52. Lindegren M, Checkley D M, Rouyer T, et al. Climate, fishing, and fluctuations of sardine and anchovy in the California Current. Proc Natl Acad Sci USA, 2013, 110: 13672–13677

    Article  Google Scholar 

  53. Liu R, Chen P, Aihara K, et al. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Sci Rep, 2015, 5: 17501

    Article  Google Scholar 

  54. Liu R, Wang X W, Aihara K, et al. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med Res Rev, 2014, 34: 455–478

    Article  Google Scholar 

  55. Liu X, Wang Y, Ji H, et al. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res, 2016, 44: e164

    Article  Google Scholar 

  56. Lockhart D J, Winzeler E A. Genomics, gene expression and DNA arrays. Nature, 2000, 405: 827–836

    Article  Google Scholar 

  57. Longtin A. Nonlinear forecasting of spike trains from sensory neurons. Int J Bifurcat Chaos, 1993, 3: 651–661

    Article  MathSciNet  MATH  Google Scholar 

  58. Lorenz E N. Atmospheric predictability as revealed by naturally occurring analogues. J Atmospheric Sci, 1969, 26: 636–646

    Article  Google Scholar 

  59. Ma H, Aihara K, Chen L. Detecting causality from nonlinear dynamics with short-term time series. Sci Rep, 2014, 4: 7464

    Article  Google Scholar 

  60. Ma H, Leng S, Tao C, et al. Detection of time delays and directional interactions based on time series from complex dynamical systems. Phys Rev E (3), 2017, 96: 012221

    Article  MathSciNet  Google Scholar 

  61. Ma H, Zhou T, Aihara K, et al. Predicting time series from short-term high-dimensional data. Int J Bifurcat Chaos, 2014, 24: 1430033

    Article  MathSciNet  MATH  Google Scholar 

  62. Marbach D, Prill R J, Schaffter T, et al. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA, 2010, 107: 6286–6291

    Article  Google Scholar 

  63. Marinazzo D, Pellicoro M, Stramaglia S. Kernel method for nonlinear Granger causality. Phys Rev Lett, 2008, 100: 144103

    Article  Google Scholar 

  64. McBride J C, Zhao X, Munro N B, et al. Sugihara causality analysis of scalp EEG for detection of early Alzheimer’s disease. Neuroimage Clin, 2015, 7: 258–265

    Article  Google Scholar 

  65. McCracken J M, Weigel R S. Convergent cross-mapping and pairwise asymmetric inference. Phys Rev E (3), 2014, 90: 062903

    Article  Google Scholar 

  66. McGowan J A, Deyle E R, Ye H, et al. Predicting coastal algal blooms in southern California. Ecology, 2017, 98: 1419–1433

    Article  Google Scholar 

  67. Müller A, Kraemer J F, Penzel T, et al. Causality in physiological signals. Physiol Meas, 2016, 37: R46

    Article  Google Scholar 

  68. Nollo G, Faes L, Antolini R, et al. Assessing causality in normal and impaired short-term cardiovascular regulation via nonlinear prediction methods. Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 2009, 367: 1423–1440

    Article  Google Scholar 

  69. Packard N H, Crutcheld J P, Farmer J D, et al. Geometry from a time series. Phys Rev Lett, 1980, 45: 712–716

    Article  Google Scholar 

  70. Pecora L M, Moniz L, Nichols J, et al. A unified approach to attractor reconstruction. Chaos, 2007, 17: 013110

    Article  MathSciNet  MATH  Google Scholar 

  71. Pereda E, Quiroga R Q, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol, 2005, 77: 1–37

    Article  Google Scholar 

  72. Pikovsky A. Discrete-time dynamic noise filtering. Sov J Commun Technol Electron, 1986, 31: 81–85

    Google Scholar 

  73. Quackenbush J. Microarray data normalization and transformation. Nat Genet, 2002, 32: 496–501

    Article  Google Scholar 

  74. Quian Quiroga R, Kraskov A, Kreuz T, et al. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys Rev E (3), 2002, 65: 041903

    Article  Google Scholar 

  75. Rienecker M M, Suarez M J, Gelaro R, et al. Merra: Nasa’s modern-era retrospective analysis for research and applications. J Climate, 2011, 24: 3624–3648

    Article  Google Scholar 

  76. Robinson J C. Takens’ embedding theorem for infinite-dimensional dynamical systems. Nonlinearity, 1999, 12: 1263–1275

    Article  MathSciNet  Google Scholar 

  77. Rosenstein M T, Collins J J, De Luca C J. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Phys D, 1994, 73: 82–98

    Article  MathSciNet  Google Scholar 

  78. Sauer T, Yorke J, Casdagli M. Embedology. J Stat Phys, 1991, 65: 579–616

    Article  MathSciNet  MATH  Google Scholar 

  79. Schiff S J, So P, Chang T, et al. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E (3), 1996, 54: 6708–6724

    Article  Google Scholar 

  80. Schumacher J, Wunderle T, Fries P, et al. A statistical framework to infer delay and direction of information flow from measurements of complex systems. Neural Comput, 2015, 27: 1555–1608

    Article  MathSciNet  Google Scholar 

  81. Sello S. Solar cycle forecasting: A nonlinear dynamics approach. Astron Astrophys, 2001, 377: 312–320

    Article  Google Scholar 

  82. Small M. Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, vol. 52. Singapore: World Scientic, 2005

    MATH  Google Scholar 

  83. Smith L A. What might we learn from climate forecasts? Proc Natl Acad Sci USA, 2002, 99: 2487–2492

    Article  Google Scholar 

  84. Stam C J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging eld. Clin Neurophysiol, 2005, 116: 2266–2301

    Article  Google Scholar 

  85. Stark J, Broomhead D, Davies M, et al. Takens embedding theorems for forced and stochastic systems. Nonlinear Anal, 1997, 30: 5303–5314

    Article  MathSciNet  MATH  Google Scholar 

  86. Stark J, Broomhead D, Davies M, et al. Delay embeddings for forced systems, II: Stochastic forcing. J Nonlinear Sci, 2003, 13: 519–577

    Article  MathSciNet  Google Scholar 

  87. Stein R R, Bucci V, Toussaint N C, et al. Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol, 2013, 9: e1003388

    Article  Google Scholar 

  88. Strogatz S H. Exploring complex networks. Nature, 2001, 410: 268–276

    Article  MATH  Google Scholar 

  89. Sugihara G. Nonlinear forecasting for the classification of natural time series. Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 1994, 348: 477–495

    MATH  Google Scholar 

  90. Sugihara G, May R. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 1990, 344: 734–741

    Article  Google Scholar 

  91. Sugihara G, May R, Ye H, et al. Detecting causality in complex ecosystems. Science, 2012, 338: 496–500

    Article  MATH  Google Scholar 

  92. Tajima S, Yanagawa T, Fujii N, et al. Untangling brain-wide dynamics in consciousness by cross-embedding. PLoS Comput Biol, 2015, 11: e1004537

    Article  Google Scholar 

  93. Takens F. Detecting strange attractors in turbulence. In: Lecture Notes in Mathematics, vol. 898. Berlin-New York: Springer, 1981, 366–381

    Google Scholar 

  94. Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev A (3), 1986, 34: 24272432

    Article  Google Scholar 

  95. Tsonis A A, Elsner J B. Nonlinear prediction as a way of distinguishing chaos from random fractal sequences. Nature, 1992, 358: 217–220

    Article  Google Scholar 

  96. van Nes E H, Scheffer M, Brovkin V, et al. Causal feedbacks in climate change. Nature Clim Change, 2015, 5: 445–448

    Article  Google Scholar 

  97. Wang W X, Lai Y-C, Grebogi C. Data based identification and prediction of nonlinear and complex dynamical systems. Phys Rep, 2016, 644: 1–76

    Article  MathSciNet  MATH  Google Scholar 

  98. Weigend A, Gershenfeld N. Time Series Prediction: Forecasting the Future and Understanding the Past. In: Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis. Upper Saddle River: Addison-Wesley Publishing, 1994

    Google Scholar 

  99. Whitney H. Differentiable manifolds. Ann of Math (2), 1936, 37: 645–680

    Article  MathSciNet  MATH  Google Scholar 

  100. Wiener N. The theory of prediction. Mod Math Engn, 1956, 1: 125–139

    Google Scholar 

  101. Wu J, Loucks O L. From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology. Q Rev Biol, 1995, 70: 439–466

    Article  Google Scholar 

  102. Ye H, Beamish R J, Glaser S M, et al. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc Natl Acad Sci USA, 2015, 112: 1569–1576

    Article  Google Scholar 

  103. Ye H, Deyle E R, Gilarranz L J, et al. Distinguishing time-delayed causal interactions using convergent cross mapping. Sci Rep, 2015, 5: 14750

    Article  Google Scholar 

  104. Ye H, Sugihara G. Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science, 2016, 353: 922–925

    Article  Google Scholar 

  105. Zhao J, Zhou Y, Zhang X, et al. Part mutual information for quantifying direct associations in networks. Proc Natl Acad Sci USA, 2016, 113: 5130–5135

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0505500), Japan Society for the Promotion of Science KAKENHI Program (Grant No. JP15H05707), and National Natural Science Foundation of China (Grant Nos. 11771010, 31771476, 91530320, 91529303, 91439103 and 81471047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luonan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Leng, S. & Chen, L. Data-based prediction and causality inference of nonlinear dynamics. Sci. China Math. 61, 403–420 (2018). https://doi.org/10.1007/s11425-017-9177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9177-0

Keywords

Navigation