Skip to main content
Log in

The Selberg-Delange method in short intervals with some applications

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish a quite general mean value result of arithmetic functions over short intervals with the Selberg-Delange method and give some applications. In particular, we generalize Selberg’s result on the distribution of integers with a given number of prime factors and Deshouillers-Dress-Tenenbaum’s arcsin law on divisors to the short interval case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui Z, Wu J. The Selberg-Delange method in short intervals with an application. Acta Arith, 2014, 163: 247–260

    Article  MathSciNet  MATH  Google Scholar 

  2. Delange H. Sur les formules dues à Atle Selberg. Bull Sci Math, 1959, 83: 101–111

    MathSciNet  MATH  Google Scholar 

  3. Delange H. Sur les formules de Atle Selberg. Acta Arith, 1971, 1: 105–146

    Article  MathSciNet  MATH  Google Scholar 

  4. Deshouillers J-M, Dress F, Tenenbaum G. Lois de répartition des diviseurs, 1. Acta Arith, 1979, 23: 273–283

    Article  MATH  Google Scholar 

  5. Garaev M Z, Luca F, Nowak W G. The divisor problem for d 4(n) in short intervals. Arch Math, 2006, 86: 60–66

    Article  MATH  Google Scholar 

  6. Hooley C. On intervals between numbers that are sums of two squares III. J Reine Angew Math, 1974, 267: 207–218

    MathSciNet  MATH  Google Scholar 

  7. Huxley M N. The difference between consecutive primes. Invent Math, 1972, 267: 164–170

    MATH  Google Scholar 

  8. Ivić A. The Riemann Zeta-Function. New York-Chichester-Brisbane-Toronto-Singapore: John Wiley & Sons, 1985

    MATH  Google Scholar 

  9. Kátai I. A remark on a paper of K. Ramachandra. In: Lecture Notes in Mathematics, vol. 1122. Berlin-Heidelberg: Springer, 1985, 147–152

    Article  MathSciNet  MATH  Google Scholar 

  10. Kátai I, Subbarao M V. Some remarks on a paper of Ramachandra. Lith Math J, 2003, 43: 410–418

    Article  MathSciNet  MATH  Google Scholar 

  11. Landau E. Handbuch der Lehre von der Verteilung der Primzahlen, 3rd ed. New York: Chelsea, 1974

    MATH  Google Scholar 

  12. Montgomery H L. Topics in Multiplicative Number Theory. Berlin-New York: Springer, 1971

    Book  MATH  Google Scholar 

  13. Motohashi Y. On the sum of the Möbius function in a short segment. Proc Japan Acad Ser A Math Sci, 1976, 52: 477–479

    MATH  Google Scholar 

  14. Ramachandra K. Some problems of analytic number theory. Acta Arith, 1976, 31: 313–324

    Article  MathSciNet  MATH  Google Scholar 

  15. Richert H. E. Zur abschatzung der Riemannschen zetafunktion in der nähe der vertikalen б = 1. Math Ann, 1967, 169: 97–101

    Article  MathSciNet  MATH  Google Scholar 

  16. Sathe L G. On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors. J Indian Math Soc (NS), 1953, 17: 63–141

    MATH  Google Scholar 

  17. Sathe L G. On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors. J Indian Math Soc (NS), 1954, 18: 27–81

    MATH  Google Scholar 

  18. Sedunova A A. On the asymptotic formulae for some multiplicative functions in short intervals. Int J Number Theory, 2015, 11: 1571–1587

    Article  MathSciNet  MATH  Google Scholar 

  19. Selberg A. Note on the paper by L. G. Sathe. J Indian Math Soc (NS), 1954, 18: 83–87

    MATH  Google Scholar 

  20. Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies in Advanced Mathematics, vol. 46. Cambridge: Cambridge University Press, 1995

  21. Titchmarsh E C. The Theory of Function, 2nd ed. Oxford: Oxford University Press, 1952

    Google Scholar 

  22. Titchmarsh E C. The Theory of the Riemann Zeta-Function, 2nd ed. Oxford: Clarendon Press, 1986

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11671253, 11771252 and 11531008), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120073110059), Program for Innovative Research Team in University of Ministry of Education of China (Grant No. IRT16R43) and Taishan Scholars Project, the Program PRC 1457-AuForDiP (CNRS-NSFC). Finally, the authors are grateful to Y-K Lau for his help during the preparation of this paper, and to the referee for a careful reading of our manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Lü, G. & Wu, J. The Selberg-Delange method in short intervals with some applications. Sci. China Math. 62, 447–468 (2019). https://doi.org/10.1007/s11425-017-9172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9172-7

Keywords

MSC(2010)

Navigation