Skip to main content
Log in

Dual submanifolds in rational homology spheres

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let Σ be a simply connected rational homology sphere. A pair of disjoint closed submanifolds M +,M - ⊂ Σ are called dual to each other if the complement Σ − M + strongly homotopy retracts onto M - or vice-versa. In this paper, we are concerned with the basic problem of which integral triples (n;M +,M -) ∈ ℕ3 can appear, where n = dimΣ − 1 and m ± = codimm ± − 1. The problem is motivated by several fundamental aspects in differential geometry.

  1. (i)

    The theory of isoparametric/Dupin hypersurfaces in the unit sphere Sn+1 initiated by ÉLie Cartan, where m ± are the focal manifolds of the isoparametric/Dupin hypersurface M ⊂ Sn+1, and m ± coincide with the multiplicities of principal curvatures of M.

  2. (ii)

    The Grove-Ziller construction of non-negatively curved Riemannian metrics on the Milnor exotic spheres Σ, i.e., total spaces of smooth S3-bundles over S4 homeomorphic but not diffeomorphic to S7, where m ± = P ± × SO(4) S3, P → S4 the principal SO(4)-bundle of Σ and P ± the singular orbits of a cohomogeneity one SO(4) × SO(3)-action on P which are both of codimension 2.

Based on the important result of Grove-Halperin, we provide a surprisingly simple answer, namely, if and only if one of the following holds true:

  • m + = m - = n

  • m + = m - = 1/3n ∈ {1, 2, 4, 8}

  • m + = m - = 1/4n ∈ {1, 2}

  • m + = m - = 1/6n ∈ {1, 2}

  • \(\frac{n}{m_{+}+m_{-}}\) = 1 or 2, and for the latter case, m + + m - is odd if min(m +,m -) ≥ 2.

In addition, if Σ is a homotopy sphere and the ratio \(\frac{n}{m_{+}+m_{-}}\) = 2 (for simplicity let us assume 2 6 m -m +), we observe that the work of Stolz on the multiplicities of isoparametric hypersurfaces applies almost identically to conclude that, the pair can be realized if and only if, either (m +,m -) = (5, 4) or m + +m - +1 is divisible by the integer δ(m -) (see the table on page 3), which is equivalent to the existence of (m -−1) linearly independent vector fields on the sphere \(\mathbb{S}^{m_ + + m_ - }\) by Adams’ celebrated work. In contrast, infinitely many counterexamples are given if Σ is a rational homology sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch U. Isoparametric hypersurfaces with four or six distinct principal curvatures. Math Ann, 1983, 264: 283–302

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams J F. Vector fields on spheres. Ann of Math (2), 1962, 75: 603–632

    Article  MathSciNet  MATH  Google Scholar 

  3. Cartan É. Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann Mat Pura Appl (4), 1938, 17: 177–191 (see also Oeuvres Complétes Partie III, 1938,2: 1431–1445)

    Article  MATH  Google Scholar 

  4. Cartan É. Sur des familles remarquables d’hypersurfaces isoparametriques dans les espaces spheriques. Math Z, 1939, 45: 335–367

    Article  MathSciNet  MATH  Google Scholar 

  5. Cartan É. Sur quelque familles remarquables d’hypersurfaces. Oeuvres Complétes Partie III, 1939, 2: 1481–1492

    MATH  Google Scholar 

  6. Cartan É. Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions. Rev Univ Tucuman Ser A, 1940, 1: 5–22 (see also Oeuvres Complétes Partie III, 1940, 2: 1513–1530)

    MATH  Google Scholar 

  7. Cecil T, Chi Q-S, Jensen G. Isoparametric hypersurfaces with four principal curvatures. Ann of Math (2), 2007, 166: 1–76

    Article  MathSciNet  MATH  Google Scholar 

  8. Cecil T, Chi Q-S, Jensen G. Dupin hypersurfaces with four principal curvatures. II. Geom Dedicata, 2007, 128: 55–95

    Article  MathSciNet  MATH  Google Scholar 

  9. Chi Q-S. Isoparametric hypersurfaces with four principal curvatures, III. J Differential Geom, 2013, 94: 487–504

    Article  MathSciNet  MATH  Google Scholar 

  10. Chi Q-S. Isoparametric hypersurfaces with four principal curvatures, IV. ArXiv:160500976, 2016

    MATH  Google Scholar 

  11. Dorfmeister J, Naher E. Isoparametric hypersurfaces, case g = 6,m = 1. Comm Algebra, 1985, 13: 2299–2368

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang F. Multiplicities of principal curvatures of isoparametric hypersurfaces. Max-Planck Institute Preprint Series, 96-80, http://www.mpim-bonn.mpg.de/preblob/3920

  13. Fang F. Topology of Dupin hypersurfaces with six distinct principal curvatures. Math Z, 1999, 231: 533–555

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang F. On the topology of isoparametric hypersurfaces with four distinct principal curvatures. Proc Amer Math Soc, 1999, 127: 259–264

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferus D, Karcher H, Münzner H. Cliffordalgebren und neue isoparametrische hyperflächen. Math Z, 1981, 177: 479–502

    Article  MathSciNet  MATH  Google Scholar 

  16. Ge J. Isoparametric foliations, diffeomorphism groups and exotic smooth structures. Adv Math, 2016, 302: 851–868

    Article  MathSciNet  MATH  Google Scholar 

  17. Ge J, Tang Z. Isoparametric functions and exotic spheres. J Reine Angew Math, 2013, 683: 161–180

    MathSciNet  MATH  Google Scholar 

  18. Grove K, Halperin S. Dupin hypersurfaces, group actions and the double mapping cylinder. J Differential Geom, 1987, 26: 429–459

    Article  MathSciNet  MATH  Google Scholar 

  19. Grove K, Ziller W. Curvature and symmetry of Milnor spheres. Ann of Math (2), 2000, 152: 331–367

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsiang W-Y, Lawson H B J. Minimal submanifolds of low cohomogeneity. J Differential Geom, 1971, 5: 1–38

    Article  MathSciNet  MATH  Google Scholar 

  21. May J P. The Geometry of Iterated Loop Spaces. New York: Springer-Verlag, 1972

    Book  MATH  Google Scholar 

  22. Milgram R J. Unstable Homotopy from the Stable Point of View. New York: Springer-Verlag, 1974

    Book  MATH  Google Scholar 

  23. Miyaoka J. Isoparametric hypersurfaces with (g,m) = (6, 2). Ann of Math (2), 2013, 177: 53–110

    Article  MathSciNet  MATH  Google Scholar 

  24. Miyaoka J. Errata of ”Isoparametric hypersurfaces with (g,m) = (6, 2)”. Ann of Math (2), 2016, 183: 1057–1071

    Article  MathSciNet  MATH  Google Scholar 

  25. Münzner H F. Isoparametric hyperflächen in sphären I. Math Ann, 1980, 251: 57–71

    Article  MathSciNet  MATH  Google Scholar 

  26. Münzner H F. Isoparametric hyperflächen in sphären II. Math Ann, 1981, 256: 215–232

    Article  MathSciNet  MATH  Google Scholar 

  27. Qian C, Tang Z. Isoparametric functions on exotic spheres. Adv Math, 2015, 272: 611–629

    Article  MathSciNet  MATH  Google Scholar 

  28. Stolz S. Multiplicities of Dupin hypersurfaces. Invent Math, 1999, 138: 253–279

    Article  MathSciNet  MATH  Google Scholar 

  29. Tang Z. Isoparametric hypersurfaces with four distinct principal curvatures. Chinese Sci Bull, 1991, 36: 1237–1240

    MathSciNet  MATH  Google Scholar 

  30. Thorbergsson G. Dupin hypersurfaces. Bull Lond Math Soc, 1983, 15: 493–498

    Article  MathSciNet  MATH  Google Scholar 

  31. Yau S T. Chern: A Great Geometer of the Twentieth Century. Cambridge: International Press, 1992

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11431009), the Ministry of Education in China, and the Municipal Administration of Beijing. The author thanks Karsten Grove for useful discussions which motivated the corollaries in the paper. The author is also very grateful to the referees for correcting a mistake and a few valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuQuan Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, F. Dual submanifolds in rational homology spheres. Sci. China Math. 60, 1549–1560 (2017). https://doi.org/10.1007/s11425-017-9130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9130-9

Keywords

MSC(2010)

Navigation