Skip to main content
Log in

Lipschitz continuity for solutions of the -Poisson equation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the Lipschitz continuity for solutions of the -Poisson equation. After characterizing the boundary conditions for the Lipschitz continuity of -harmonic mappings, we present four equivalent conditions for the (K,K′)-quasiconformal solutions of the -Poisson equation with a nonhomogeneous term to be Lipschitz continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L V. Lectures on Quasiconformal Mappings. University Lecture Series, vol. 38. Providence: Amer Math Soc, 2006

    Google Scholar 

  2. Astala K. Iwaniec T, Martin G. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton: Princeton University Press, 2009

    MATH  Google Scholar 

  3. Behm G. Solving Poisson equation for the standard weighted Laplacian in the unit disc. ArXiv:1306.2199v2, 2013

    Google Scholar 

  4. Chen J L, Li P J, Sahoo S K, et al. On the Lipschitz continuity of certain quasiregular mappings between smooth Jordan domains. Israel J Math, 2017, 220: 453–478

    Article  MathSciNet  Google Scholar 

  5. Chen M, Chen X D. (K,K’)-quasiconformal harmonic mappings of the upper half plane onto itself. Ann Acad Sci Fenn Math, 2012, 37: 265–276

    Article  MathSciNet  Google Scholar 

  6. Chen S L, Vuorinen M. Some properties of a class of elliptic partial differential operators. J Math Anal Appl, 2015, 431: 1124–1137

    Article  MathSciNet  Google Scholar 

  7. Chen X D, Kalaj D. A representation theorem for standard weighted harmonic mappings with an integer exponent and its applications. J Math Anal Appl, 2016, 444: 1233–1241

    Article  MathSciNet  Google Scholar 

  8. Chen X D, Kalaj D. Representation theorem of standard weighted harmonic mappings in the unit disk. https://doi.org/www.researchgate.net/publication/330243622, 2018

    Google Scholar 

  9. Clunie J, Theil-Small T. Harmonic univalent functions. Ann Acad Sci Fenn Math, 1984, 9: 3–25

    Article  MathSciNet  Google Scholar 

  10. Duren P. Harmonic Mappings in the Plane. Cambridge: Cambridge University Press, 2004

    Book  Google Scholar 

  11. Finn R, Serrin J. On the Hölder continuity of quasi-conformal and elliptic mappings. Trans Amer Math Soc, 1958, 89: 1–15

    MathSciNet  MATH  Google Scholar 

  12. Garabedian P R. A partial differential equation arising in conformal mapping. Pacific J Math, 1951, 1: 485–524

    Article  MathSciNet  Google Scholar 

  13. Garnett J B. Bounded Analytic Functions, 1st ed. Graduate Texts in Mathematics. pNew York: Springer, 2007

    Google Scholar 

  14. Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman spaces. Graduate Texts in Mathematics. New York: Springer-Verlag, 2000

    Google Scholar 

  15. Kalaj D. Quasiconformal mapping between Jordan domains. Math Z, 2008, 260: 237–252

    Article  MathSciNet  Google Scholar 

  16. Kalaj D. On quasi-conformal harmonic maps between surfaces. Int Math Res Not IMRN, 2015, 2015: 355–380

    Article  MathSciNet  Google Scholar 

  17. Kalaj D, Mateljević M. Inner estimate and quasiconformal harmonic maps between smooth domains. J Anal Math, 2006, 100: 117–132

    Article  MathSciNet  Google Scholar 

  18. Kalaj D, Mateljević M. (K,K’)-quasiconformal harmonic mappings. Potential Anal, 2012, 36: 117–135

    Article  MathSciNet  Google Scholar 

  19. Kalaj D, Pavlović M. On quasiconformal self-mappings of the unit disk satisfying Poisson equation. Trans Amer Math Soc, 2011, 363: 4043–4061

    Article  MathSciNet  Google Scholar 

  20. Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane. Berlin-Heidelberg-New York: Springer-Verlag, 1973

    Book  Google Scholar 

  21. Li P J, Chen J L, Wang X T. Quasiconformal solution of Poisson equations. Bull Aust Math Soc, 2015, 92: 420–428

    Article  MathSciNet  Google Scholar 

  22. Manojlović V. Bi-Lipschicity of quasiconformal harmonic mappings in the plane. Filomat, 2009, 23: 85–89

    Article  MathSciNet  Google Scholar 

  23. Martio O. On harmonic quasiconformal mappings. Ann Acad Sci Fenn Ser A, 1968, 425: 3–10

    MathSciNet  MATH  Google Scholar 

  24. Mateljević M. Quasiconformality of harmonic mappings between Jordan domains. Filomat, 2012, 26: 479–510

    Article  MathSciNet  Google Scholar 

  25. Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43: 126–166

    Article  MathSciNet  Google Scholar 

  26. Mu J J, Chen X D. Landau-type theorems for solutions of a quasilinear differential equation. J Math Study, 2014, 47: 295–304

    Article  MathSciNet  Google Scholar 

  27. Nirenberg L. On nonlinear elliptic partial differential equations and Hölder continuity. Comm Pure Appl Math, 1953, 6: 103–156

    Article  MathSciNet  Google Scholar 

  28. Olofsson A. Differential operators for a scale of Poisson type kernels in the unit disc. J Anal Math, 2014, 123: 227–249

    Article  MathSciNet  Google Scholar 

  29. Olofsson A, Wittsten J. Poisson integrals for standard weighted Laplacians in the unit disc. J Math Soc Japan, 2013, 65: 447–486

    Article  MathSciNet  Google Scholar 

  30. Partyka D, Sakan K. On bi-Lipschitz type inequalities for quasiconformal hamonic mappings. Ann Acad Sci Fenn Math, 2007, 32: 579–594

    MathSciNet  MATH  Google Scholar 

  31. Pavlović M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk. Ann Acad Sci Fenn Math, 2002, 27: 365–372

    MathSciNet  MATH  Google Scholar 

  32. Simon L. A Hölder estimate for quasiconformal maps between surfaces in Euclidean space. Acta Math, 1977, 139: 19–51

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11471128), the Natural Science Foundation of Fujian Province of China (Grant No. 2016J01020), Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant Nos. ZQN-YX110 and ZQN-PY402). The author is deeply indebted to Professor David Kalaj for his helpful suggestion about the study of Lipschitz continuity. The author is grateful to the anonymous referees for their careful reading of the manuscript and many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingdi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X. Lipschitz continuity for solutions of the -Poisson equation. Sci. China Math. 62, 1935–1946 (2019). https://doi.org/10.1007/s11425-016-9300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9300-5

Keywords

MSC(2010)

Navigation