Skip to main content
Log in

Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the time-step condition of linearized implicit finite difference method for solving the Gross-Pitaevskii equation with an angular momentum rotation term. Unlike the existing studies in the literature, where the cut-off function technique was used to establish the error estimates under some conditions of the time-step size, this paper introduces an induction argument and a ‘lifting’ technique as well as some useful inequalities to build the optimal maximum error estimate without any constraints on the time-step size. The analysis method can be directly extended to the general nonlinear Schrödinger-type equations in twoand three-dimensions and other linear implicit finite difference schemes. As a by-product, this paper defines a new type of energy functional of the grid functions by using a recursive relation to prove that the proposed scheme preserves well the total mass and energy in the discrete sense. Several numerical results are reported to verify the error estimates and conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis G, Dougalis V, Karakashian O. On fully discrete Galerkin methods of second order temporal accuracy for the nonlinear Schrödinger equation. Numer Math, 1991, 59: 31–53

    Article  MathSciNet  MATH  Google Scholar 

  2. Antoine X, Bao W, Besse C. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput Phys Comm, 2013, 184: 2621–2633

    Article  MATH  Google Scholar 

  3. Bao W, Cai Y. Uniform error estimates of finite difference methods for the nonlinear schrödinger equation with wave operator. SIAM J Numer Anal, 2012, 50: 492–521

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao W, Cai Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet Relat Models, 2013, 6: 1–135

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao W, Cai Y. Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math Comp, 2013, 82: 99–128

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao W, Du Q, Zhang Y. Dynamics of rotating Bose-Einstein condensates and its effcient and accurate numerical computation. SIAM J Appl Math, 2006, 66: 758–786

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao W, Li H, Shen J. A generalized-Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates. SIAM J Sci Comput, 2009, 31: 3685–3711

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao W, Wang H. An effcient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates. J Comput Phys, 2006, 217: 612–626

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao W, Wang H, Markowich P A. Ground, symmetric and central vortex states in rotating Bose-Einstein condensates. Commun Math Sci, 2005, 3: 57–88

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang Q, Guo B, Jiang H. Finite difference method for generalized Zakharov equations. Math Comp, 1995, 64: 537–553

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang Q, Jia E, Sun W. Difference schemes for solving the generalized nonlinear Schrödinger equation. J Comput Phys, 1999, 148: 397–415

    Article  MathSciNet  MATH  Google Scholar 

  12. Chippada S, Dawson C N, Martinez M L, et al. Finite element approximations to the system of shallow water equations, Part II: Discrete time a priori error estimates. SIAM J Numer Anal, 1999, 36: 226–250

    Article  MathSciNet  MATH  Google Scholar 

  13. Dawson C N, Martinez M L. A characteristic-Galerkin approximation to a system of shallow water equations. Numer Math, 2000, 86: 239–256

    Article  MathSciNet  MATH  Google Scholar 

  14. Hao C, Hsiao L, Li H. Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions. J Math Phys, 2007, 48: 102105

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao C, Hsiao L, Li H. Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term. Math Methods Appl Sci, 2008, 31: 655–664

    Article  MathSciNet  MATH  Google Scholar 

  16. Liao H, Sun Z. Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J Numer Anal, 2010, 47 4381–4401

    Article  MathSciNet  MATH  Google Scholar 

  17. Lieb E H, Seiringer R. Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Comm Math Phys, 2006, 264: 505–537

    Article  MathSciNet  MATH  Google Scholar 

  18. Pitaevskii L P, Stringary S. Bose-Einstein Condensation. Oxford: Clarendon Press, 2003

    MATH  Google Scholar 

  19. Thomée V. Galerkin Finite Element Methods for Parabolic Problems. Berlin: Springer-Verlag, 1997

    Book  MATH  Google Scholar 

  20. Wang H. A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates. J Comput Appl Math, 2007, 205: 88–104

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang T. Optimal point-wise error estimate of a compact difference scheme for the coupled gross-pitaevskii equations in one dimension. J Sci Comput, 2014, 59: 158–186

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang T, Guo B, Xu Q. Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J Comput Phys, 2013, 243: 382–399

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang T, Zhao X. Optimal l error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions. Sci China Math, 2014, 57: 2189–2214

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang F, Han B. The finite difference method for dissipative Klein-Gordon-Schrödinger equations in three dimensions. J Comput Math, 2010, 28: 879–900

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou Y. Application of Discrete Functional Analysis to the Finite Difference Methods. Beijing: International Academic Publishers, 1990

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11571181 and 11731014), Natural Science Foundation of Jiangsu Province (Grant No. BK20171454) and Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingchun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Guo, B. Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation. Sci. China Math. 62, 1669–1686 (2019). https://doi.org/10.1007/s11425-016-9212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9212-1

Keywords

MSC(2010)

Navigation