Science China Mathematics

, Volume 61, Issue 6, pp 1063–1078

# Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property

• Xiangke Chang
• Yi He
• Xingbiao Hu
• Shihao Li
• Hon-wah Tam
• Yingnan Zhang
Articles

## Abstract

In this paper, we show that the coupled modified KdV equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials, convergence acceleration algorithms and Laurent property are discussed in detail.

## Keywords

integrable system skew orthogonal polynomial convergence acceleration algorithm Laurent property

## MSC(2010)

37K10 11B83 65B05 42C05

## Preview

Unable to display preview. Download preview PDF.

## Notes

### Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11331008, 11201469, 11571358 and 11601237), the China Postdoctoral Science Foundation Funded Project (Grant Nos. 2012M510186 and 2013T60761), and the Hong Kong Research Grant Council (Grant No. GRF HKBU 202512).

## References

1. 1.
Adler M, Forrester P J, Nagao T, et al. Classical skew orthogonal polynomials and random matrices. J Stat Phys, 2000, 99: 141–170
2. 2.
Beals R, Sattinger D H, Szmigielski J. Multipeakons and the classical moment problem. Adv Math, 2000, 154: 229–257
3. 3.
Berezanski Y M. The integration of semi-infinite Toda chain by means of inverse spectral problem. Rep Math Phys, 1986, 24: 21–47
4. 4.
Bertola M, Gekhtman M, Szmigielski J. Peakons and Cauchy biorthogonal polynomials. ArXiv:0711.4082, 2007
5. 5.
Bertola M, Gekhtman M, Szmigielski J. The Cauchy two-matrix model. Comm Math Phys, 2009, 287: 983–1014
6. 6.
Bertola M, Gekhtman M, Szmigielski J. Cauchy biorthogonal polynomials. J Approx Theory, 2010, 162: 832–867
7. 7.
Brezinski C, He Y, Hu X B, et al. Multistep ε-algorithm, shanks’ transformation, and Lotka-Volterra system by Hirota’s method. Math Comp, 2012, 81: 1527–1549
8. 8.
Brezinski C, Redivo-Zaglia M. Extrapolation Methods. Amsterdam: North-Holland, 1991
9. 9.
Caieniello E R. Combinatorics and Renormalization in Quantum Field Theory. Mass-London-Amsterdam: Benjamin, 1973Google Scholar
10. 10.
Carroll G, Speyer D. The cube recurrence. Electron J Combin, 2004, 11: 1–31
11. 11.
Chang X K, Chen X M, Hu X B, et al. About several classes of bi-orthogonal polynomials and discrete integrable systems. J Phys A, 2015, 48: 015204
12. 12.
Chang X K, Hu X B, Xin G. Hankel determinant solutions to several discrete integrable system and the Laurent property. SIAM J Discrete Math, 2015, 29: 667–682
13. 13.
Deift P. Integrable systems and combinatorial theory. Notices Amer Math Soc, 2000, 47: 631–640
14. 14.
Di Francesco P. Integrable combinatorics. In: XVIIth International Congress on Mathematical Physics. Hackensack: World Scientific, 2014, 29–51Google Scholar
15. 15.
Di Francesco P, Kedem R. Q-systems, heaps, paths and cluster positivity. Comm Math Phys, 2010, 293: 727–802
16. 16.
Dyson F J. A class of matrix ensembles. J Math Phys, 1972, 13: 90–97
17. 17.
Elaydi S. An Introduction to Difference Equations. New York: Springer, 2005
18. 18.
Fomin S, Zelevinsky A. The Laurent phenomenon. Adv in Appl Math, 2002, 28: 119–144
19. 19.
Fordy A P, Hone A N W. Discrete integrable systems and poisson algebras from cluster maps. Comm Math Phys, 2014, 325: 527–584
20. 20.
Ghosh S. Generalized Christoffel-Darboux formula for skew-orthogonal polynomials and random matrix theory. J Phys A, 2006, 39: 8775–8782
21. 21.
Ghosh S. Skew-orthogonal polynomials, differential systems and random matrix theory. J Phys A, 2007, 40: 711–740
22. 22.
Ghosh S. Generalized Christoffel-Darboux formula for classical skew-orthogoanl polynomials. J Phys A, 2008, 41: 435204
23. 23.
He Y, Hu X B, Sun J Q, et al. Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation. SIAM J Sci Comput, 2011, 33: 1234–1245
24. 24.
Hirota R. “Molecule solutions” of coupled modified KdV equations. J Phys Soc Japan, 1997, 66: 2530–2532
25. 25.
Hirota R. The Direct Method in Soliton Theory. New York: Cambridge University Press, 2004
26. 26.
Hone A N W, Swart C. Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences. Math Proc Cambridge Philos Soc, 2008, 145: 65–86
27. 27.
Ismail M. Classical and Quantum Orthogonal Polynomials in One Variable. New York: Cambridge University Press, 2009
28. 28.
Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersing media. Sov Phys Dokl, 1970, 15: 539–541
29. 29.
Kodama Y. KP solitons, total positivity, and cluster algebras. Proc Natl Acad Sci USA, 2011, 108: 8984–8989
30. 30.
Kodama Y, Pierce V U. Geometry of the Pfaff lattice. Int Math Res Not IMRN, 2007, https://doi.org/10.1093/ imrn/rnm120Google Scholar
31. 31.
Korteweg D J, De Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos Mag, 1895, 39: 422–443
32. 32.
Miki H, Goda H, Tsujimoto S. Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems. SIGMA Symmetry Integrability Geom Methods Appl, 2012, 8: 1–14
33. 33.
Nagai A, Satsuma J. Discrete soliton equations and convergence acceleration algorithms. Phys Lett A, 1995, 209: 305–312
34. 34.
Nagai A, Tokihiro T, Satsuma J. The Toda molecule equation and the "-algorithm. Math Comp, 1998, 67: 1565–1575
35. 35.
Nakamura Y. Applied Integrable Systems (in Japanese). Tokyo: Shokabo, 2000Google Scholar
36. 36.
Nakamura Y, Zhedanov A. Special solutions of the Toda chain and combinatorial numbers. J Phys A, 2004, 37: 5849–5862
37. 37.
Papageorgiou V, Grammaticos B, Ramani A. Integrable lattices and convergence acceleration algorithms. Phys Lett A, 1993, 179: 111–115
38. 38.
Papageorgiou V, Grammaticos B, Ramani A. Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm. Lett Math Phys, 1995, 34: 91–101
39. 39.
Peherstorfer F, Spiridonov V P, Zhedanov A S. Toda chain, Stieltjes function, and orthogonal polynomials. Theoret Math Phys, 2007, 151: 505–528
40. 40.
Pierce V U. A Riemann-Hilbert problem for skew-orthogonal polynomials. J Comput Appl Math, 2008, 215: 230–241
41. 41.
Speyer D E. Perfect matchings and the octahedron recurrence. J Algebraic Combin, 2007, 25: 309–348
42. 42.
Spiridonov V P, Tsujimoto S, Zhedanov A S. Integrable discrete time chains for the Frobenius-Stickelberger-Thiele polynomials. Comm Math Phys, 2007, 272: 139–165
43. 43.
Sun J Q, Chang X K, He Y, et al. An extended multistep shanks transformation and convergence acceleration algorithm with their convergence and stability analysis. Numer Math, 2013, 125: 785–809
44. 44.
Tsujimoto S, Kondo K. The molecule solutions of discrete integrable systems and orthogonal polynomials (in Japanese). RIMS Kôkyûroku Bessatsu, 2000, 1170: 1–8
45. 45.
Tsujimoto S, Nakamura Y, Iwasaki M. The discrete Lotka-Volterra system computes singular values. Inverse Problems, 2001, 17: 53–58
46. 46.
Vein P, Dale R. Determinants and Their Applications in Methematical Physics. New York: Springer, 1999
47. 47.
Wynn P. On a device for computing the e m(S n) transformation. Math Tables Aids Comput, 1956, 10: 91–96
48. 48.
Wynn P. On a Procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc Camb Phil Soc, 1956, 52: 663–671

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

## Authors and Affiliations

• Xiangke Chang
• 1
• 2
• Yi He
• 3
• Xingbiao Hu
• 1
• 2
• Shihao Li
• 1
• 2
• Hon-wah Tam
• 4
• Yingnan Zhang
• 5
1. 1.LSEC, ICMSEC, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina
3. 3.Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina
4. 4.Department of Computer ScienceHong Kong Baptist UniversityKowloon Tong, Hong KongChina
5. 5.School of Mathematical SciencesNanjing Normal UniversityNanjingChina