Fiducial generalized p-values for testing zero-variance components in linear mixed-effects models

Articles
  • 3 Downloads

Abstract

Linear mixed-effects models are widely used in analysis of longitudinal data. However, testing for zero-variance components of random effects has not been well resolved in statistical literature, although some likelihood-based procedures have been proposed and studied. In this article, we propose a generalized p-value based method in coupling with fiducial inference to tackle this problem. The proposed method is also applied to test linearity of the nonparametric functions in additive models. We provide theoretical justifications and develop an implementation algorithm for the proposed method. We evaluate its finite-sample performance and compare it with that of the restricted likelihood ratio test via simulation experiments. We illustrate the proposed approach using an application from a nutritional study.

Keywords

fiducial distribution generalized pivotal quantity generalized test variable penalized spline additive models restricted likelihood ratio test structural equation zero-variance components 

MSC(2010)

62J10 62G10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Shandong Provincial Natural Science Foundation of China (Grant No. ZR2014AM019), National Natural Science Foundation of China (Grant Nos. 11171188 and 11529101), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China, and National Science Foundation of USA (Grant Nos. DMS-1418042 and DMS-1620898). The authors thank two reviewers for their valuable suggestions.

References

  1. 1.
    Arendacká B. Generalized confidence intervals on the variance component in mixed linear models with two variance components. Statistics, 2005, 39: 275–286MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brumback B A, Ruppert D, Wand M. Comment on "Variable selection and function estimation in additive nonparametric regression using a data-based prior" by Shively, Kohn and Wood. J Amer Statist Assoc, 1999, 94: 794–797Google Scholar
  3. 3.
    Crainiceanu C M, Ruppert D. Restricted likelihood ratio tests in nonparametric longitudinal models. Statist Sinica, 2004, 14: 713–729MathSciNetMATHGoogle Scholar
  4. 4.
    Crainiceanu C M, Ruppert D. Likelihood ratio tests in linear mixed models with one variance component. J R Stat Soc Ser B Stat Methodol, 2004, 66: 165–185MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Crainiceanu C M, Ruppert D, Claeskens G, et al. Likelihood ratio tests of polynomial regression against a general nonparametric alternative. Biometrika, 2005, 92: 91–103MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Crainiceanu C M, Ruppert D, Vogelsang T. Some properties of likelihood ratio tests in linear mixed models. Technical report. New York: Cornell University, 2003Google Scholar
  7. 7.
    Das R, Sinha B K. Robust optimum invariant unbiased tests for variance components. In: Proceedings of the Second International Tampere Conference in Statistics. Tampere: University of Tampere, 1987, 317–342Google Scholar
  8. 8.
    David A P, Stone M. The functional model basis of fiducial inference. Ann Statist, 1982, 10: 1054–1067MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Davidian M, Giltinan D M. Nonlinear Models for Repeated Measurement Data. New York: Chapman and Hall, 1995Google Scholar
  10. 10.
    El-Baddiouni M Y, Halawa A M. A combined invariant test for a null variance ratio. Biom J, 2003, 45: 249–259MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fairfield K M, Fletcher R H. Vitamins for chronic disease prevention in adults. J Amer Med Assoc, 2002, 287: 3116–3226CrossRefGoogle Scholar
  12. 12.
    Fisher R A. Inverse probability. Math Proc Cambridge Philos Soc, 1930, 26: 528–535CrossRefMATHGoogle Scholar
  13. 13.
    Greven S, Crainiceanu C M, Kuechenhoff H, et al. Restricted likelihood ratio testing for zero variance components in linear mixed models. J Comput Graph Statist, 2008, 17: 870–891MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hannig J. On generalized fiducial inference. Statist Sinica, 2009, 19: 491–544MathSciNetMATHGoogle Scholar
  15. 15.
    Hannig J, Iyer H. Fiducial intervals for variance components in an unbalanced two-component normal mixed linear model. J Amer Statist Assoc, 2008, 103: 854–865MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hannig J, Iyer H, Patterson P. Fiducial generalized confidence intervals. J Amer Statist Assoc, 2006, 101: 254–269MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Härdle W, Müller M, Sperlich S, et al. Nonparametric and Semiparametric Models. Heidelberg: Springer-Verlag, 2004CrossRefMATHGoogle Scholar
  18. 18.
    Khuri A, Mathew T, Sinha B K. Statistical Tests for Mixed Linear Models. New York: John Wiley & Sons, 1998CrossRefMATHGoogle Scholar
  19. 19.
    Krishnamoorthy K, Mathew T. Inferences on the means of lognormal distributions using generalized p-values and generalized confidence intervals. J Statist Plann Inference, 2003, 115: 103–121MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Laird N, Ware J. Random-effects models for longitudinal data. Biometrics, 1982, 38: 963–974CrossRefMATHGoogle Scholar
  21. 21.
    Mathew T, Webb D W. Generalized p-values and confidence intervals for variance components: Applications to army test and evaluation. Technometrics, 2005, 47: 312–322MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nierenberg D W, Stukel T A, Baron J A, et al. Determinants of plasma levels of beta-carotene and retinol. Amer J Epidemiol, 1989, 130: 511–521CrossRefGoogle Scholar
  23. 23.
    Pinheiro J C, Bates D M. Mixed-Effects Models in S and S-PLUS. New York: Springer, 2000CrossRefMATHGoogle Scholar
  24. 24.
    Ruppert D, Wand M, Carroll R. Semiparametric Regression. New York: Cambridge University Press, 2003CrossRefMATHGoogle Scholar
  25. 25.
    Scheipl F, Greven S, Küchenhoff H. Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput Statist Data Anal, 2008, 52: 3283–3299MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Self S, Liang K-Y. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Amer Statist Assoc, 1987, 82: 605–610MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Shephard N G. Maximum likelihood estimation of regression models with stochastic trend components. J Amer Statist Assoc, 1993, 88: 590–595MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Stram D, Lee J-W. Variance components testing in the longitudinal mixed effects model. Biometrics, 1994, 50: 1171–1177CrossRefMATHGoogle Scholar
  29. 29.
    Tian L. Inferences on the within-subject coeffcient of variation. Stat Med, 2005, 25: 2008–2017CrossRefGoogle Scholar
  30. 30.
    Tian L. Inferences on standardized mean difference: The generalized variable approach. Stat Med, 2006, 26: 945–953MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tsui K W, Weerahandi S. Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. J Amer Statist Assoc, 1989, 84: 602–607MathSciNetGoogle Scholar
  32. 32.
    Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. New York: Springer, 2000MATHGoogle Scholar
  33. 33.
    Vonesh E F, Chinchilli V M. Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York: Marcel Dekker, 1996MATHGoogle Scholar
  34. 34.
    Wald A. A note on regression analysis. Ann Math Statist, 1947, 18: 586–589MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Weerahandi S. Testing variance components in mixed models with generalized p-values. J Amer Statist Assoc, 1991, 86: 151–153MathSciNetGoogle Scholar
  36. 36.
    Weerahandi S. Exact Statistical Methods for Data Analysis. New York: Springer-Verlag, 1995CrossRefMATHGoogle Scholar
  37. 37.
    Weerahandi S. Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models. New Jersey: John Wiley & Sons, 2004MATHGoogle Scholar
  38. 38.
    Zhou L, Mathew T. Some tests for variance components using generalized p-values. Technometrics, 1994, 36: 394–402MathSciNetMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsQingdao UniversityQingdaoChina
  2. 2.Department of Mathematical SciencesMontclair State UniversityMontclairUSA
  3. 3.Department of StatisticsGeorge Washington UniversityWashingtonUSA

Personalised recommendations