Science China Mathematics

, Volume 61, Issue 7, pp 1219–1242 | Cite as

The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation

  • Fashun Gao
  • Minbo YangEmail author


We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation
$$ - \Delta u = \left( {\int_\Omega {\frac{{{{\left| {u\left( y \right)} \right|}^{2_\mu ^*}}}}{{{{\left| {x - y} \right|}^\mu }}}dy} } \right){\left| u \right|^{2_\mu ^* - 2}}u + \lambda uin\Omega ,$$
, where Ω is a bounded domain of R N with Lipschitz boundary, λ is a real parameter, N ≥ 3, \(2_\mu ^* = \left( {2N - \mu } \right)/\left( {N - 2} \right)\) is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.


Brezis-Nirenberg problem Choquard equation Hardy-Littlewood-Sobolev inequality critical exponent 


35J25 35J60 35A15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (Grant Nos. 11571317 and 11671364) and Natural Science Foundation of Zhejiang (Grant No. LY15A010010). The authors thank the anonymous referees for their useful comments and suggestions which helped to improve the presentation of the paper greatly.


  1. 1.
    Ackermann N. On a periodic Schrödinger equation with nonlocal superlinear part. Math Z, 2004, 248: 423–443MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alves C O, Cassani D, Tarsi C, et al. Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in R2. J Differential Equations, 2016, 261: 1933–1972MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alves C O, Nóbrega A B, Yang M B. Multi-bump solutions for Choquard equation with deepening potential well. Calc Var Partial Differential Equations, 2016, 55: Scholar
  4. 4.
    Alves C O, Yang M B. Existence of semiclassical ground state solutions for a generalized Choquard equation. J Differential Equations, 2014, 257: 4133–4164MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alves C O, Yang M B. Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method. Proc Roy Soc Edinburgh Sect A, 2016, 146: 23–58MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barrios B, Colorado E, Servadei R, et al. A critical fractional equation with concave-convex power nonlinearities. Ann Inst H Poincaré Anal Non Linéaire, 2015, 32: 875–900MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486–490MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pure Appl Math, 1983, 36: 437–477MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buffoni B, Jeanjean L, Stuart C A. Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc Amer Math Soc, 1993, 119: 179–186MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cao D M, Peng S J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differential Equations, 2003, 193: 424–434MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Capozzi A, Fortunato D, Palmieri G. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. An Inst H Poincaré Anal Non Linéaire, 1985, 2: 463–470MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cerami G, Fortunato D, Struwe M. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 341–350MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J Funct Anal, 1986, 69: 289–306MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cingolani S, Clapp M, Secchi S. Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63: 233–248MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Clapp M, Salazar D. Positive and sign changing solutions to a nonlinear Choquard equation. J Math Anal Appl, 2013, 407: 1–15MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations. J Differential Equations, 2001, 177: 494–552MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ghimenti M, Van Schaftingen J. Nodal solutions for the Choquard equation. J Funct Anal, 2016, 271: 107–135MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ghoussoub N, Yuan C. Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponent. Trans Amer Math Soc, 2000, 352: 5703–5743MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Janneli E. The role played by space dimension in elliptic critical problems. J Differential Equations, 1999, 156: 407–426MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lieb E. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud Appl Math, 1976/1977, 57: 93–105MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lieb E, Loss M. Analysis. Graduate Studies in Mathematics. Providence: Amer Math Soc, 2001Google Scholar
  22. 22.
    Lions P. The Choquard equation and related questions. Nonlinear Anal, 1980, 4: 1063–1072MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ma L, Zhao L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195: 455–467MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Moroz V, Van Schaftingen J. Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265: 153–184MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Moroz V, Van Schaftingen J. Existence of groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367: 6557–6579MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Moroz V, Van Schaftingen J. Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 52: 199–235MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Moroz V, Van Schaftingen J. Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun Contemp Math, 2015, 17: 1550005MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pekar S. Untersuchungüber die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954zbMATHGoogle Scholar
  29. 29.
    Penrose R. On gravity’s role in quantum state reduction. Gen Relativity Gravitation, 1996, 28: 581–600MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rabinowitz P. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. Providence: Amer Math Soc, 1986Google Scholar
  31. 31.
    Riesz M. L’intégrale de Riemann-Liouville et le probl`eme de Cauchy. Acta Math, 1949, 81: 1–223MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schechter M, Zou W M. On the Brézis-Nirenberg problem. Arch Ration Mech Anal, 2010, 197: 337–356MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Secchi S. A note on Schrödinger-Newton systems with decaying electric potential. Nonlinear Anal, 2010, 72: 3842–3856MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367: 67–102MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Tan J G. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differential Equations, 2011, 42: 21–41MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wei J C, Winter M. Strongly interacting bumps for the Schrödinger-Newton equations. J Math Phys, 2009, 50: 012905MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Boston: Birkhäuser, 1996Google Scholar
  38. 38.
    Willem M. Functional Analysis. Fundamentals and Applications. Cornerstones, vol. 14. New York: Birkhäuser/Springer, 2013Google Scholar
  39. 39.
    Yang M B, Ding Y H. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Commun Pure Appl Anal, 2013, 12: 771–783MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang Normal UniversityJinhuaChina

Personalised recommendations