Skip to main content
Log in

Gap results for compact quasi-Einstein metrics

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we work on compact quasi-Einstein metrics and prove several gap results. In the first part, we get a gap estimate for the first nonzero eigenvalue of the weighted Laplacian, by establishing a comparison theorem for the weighted heat kernel. In the second part, we establish two gap results for the Ricci curvature and the scalar curvature, based on which some rigid properties can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry D, Qian Z M. Volume comparison theorems without Jacobi fields in current trends in potential theory. Theta Ser Adv Math, 2005, 4: 115–122

    MATH  Google Scholar 

  2. Besse A L. Einstein Manifolds. Volume 10 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Berlin: Springer-Verlag, 1987

    Google Scholar 

  3. Cao H D, Zhu X P. A complete proof of the Poincar´e and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow. Asian J Math, 2006, 10: 165–492

    Article  MathSciNet  MATH  Google Scholar 

  4. Case J. On the nonexistence of quasi-Einstein metrics. Pacific J Math, 2010, 248: 277–284

    Article  MathSciNet  MATH  Google Scholar 

  5. Case J, Shu Y J, Wei G. Rigidity of quasi-Einstein metrics. Differential Geom Appl, 2011, 29: 93–100

    Article  MathSciNet  MATH  Google Scholar 

  6. Chavel I. Eigenvalues in Riemannian Geometry. New York: Academic Press, 1984

    MATH  Google Scholar 

  7. Cheeger J, Yau S T. A lower bound for the heat kernel. Comm Pure Appl Math, 1981, 34: 465–480

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández-López M, García-Río E. Some gap theorems for gradient Ricci solitons. Internat J Math, 2012, 23: 1250072

    Article  MathSciNet  MATH  Google Scholar 

  9. Grigor′yan A. Heat kernels on weighted manifolds and applications. Contemp Math, 2006, 398: 93–191

    Article  MathSciNet  Google Scholar 

  10. Hamilton R S. The Formation of Singularities in the Ricci Flow. Surveys in Differential Geometry. Cambridge: International Press, 1995

    Google Scholar 

  11. Kim D S, Kim Y H. Compact Einstein warped product spaces with nonpositive scalar curvature. Proc Amer Math Soc, 2003, 131: 2573–2576

    Article  MathSciNet  MATH  Google Scholar 

  12. Li H. Gap theorems for Kähler-Ricci solitons. Arch Math (Basel), 2008, 91: 187–192

    Article  MathSciNet  MATH  Google Scholar 

  13. Li X D. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J Math Pures Appl (9), 2005, 84: 1295–1361

    Article  MathSciNet  MATH  Google Scholar 

  14. Li X D. Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Émery Ricci curvature. Math Ann, 2012, 353: 403–437

    Article  MathSciNet  MATH  Google Scholar 

  15. Lichnerowicz A. Geometrie des groupes de transformations. Paris: Dunod, 1958

    MATH  Google Scholar 

  16. Lott J. Some geometric properties of the Bakry-Émery Ricci tensor. Comment Math Helv, 2003, 78: 865–883

    Article  MathSciNet  MATH  Google Scholar 

  17. Lü H, Page D N, Pope C N. New inhomogeneous Einstein metrics on sphere bundles over Einstein-Kähler manifolds. Phys Lett B, 2004, 593: 218–226

    Article  MathSciNet  MATH  Google Scholar 

  18. Perelman G. The entropy formula for the Ricci flow and its geometric applications. ArXiv:math/0211159v1, 2002

    MATH  Google Scholar 

  19. Schoen R, Yau S T. Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. Cambridge: International Press, 1994

    Google Scholar 

  20. Wang L F. The upper bound of the L 2 μ spectrum. Ann Global Anal Geom, 2010, 37: 393–402

    Article  MathSciNet  Google Scholar 

  21. Wang L F. Rigidity properties of quasi-Einstein metrics. Proc Amer Math Soc, 2011, 139: 3679–3689

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang L F. On noncompact τ-quasi-Einstein metrics. Pacific J Math, 2011, 254: 449–464

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang L F. On L p f -spectrum and τ-quasi-Einstein metric. J Math Anal Appl, 2012, 389: 195–204

    Article  MathSciNet  Google Scholar 

  24. Wang L F. Monotonicity formulas via the Bakry-Émery curvature. Nonlinear Anal, 2013, 89: 230–241

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang L F. Diameter estimate for compact quasi-Einstein metrics. Math Z, 2013, 273: 801–809

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang L F. Potential functions estimates for quasi-Einstein metrics. J Funct Anal, 2014, 267: 1986–2004

    Article  MathSciNet  MATH  Google Scholar 

  27. Wei G, Wylie W. Comparison geometry for the Bakry-Émery Ricci tensor. J Differential Geom, 2009, 83: 377–405

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Jiangsu Province (Grant No. BK20141235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L. Gap results for compact quasi-Einstein metrics. Sci. China Math. 61, 943–954 (2018). https://doi.org/10.1007/s11425-016-9049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9049-9

Keywords

MSC(2010)

Navigation