Science China Mathematics

, Volume 61, Issue 3, pp 517–534 | Cite as

Weighted weak type (1, 1) estimate for the Christ-Journé type commutator

  • Yong Ding
  • Xudong Lai


Let K be the Calderón-Zygmund convolution kernel on Rd (d ≥ 2). Christ and Journé de0ned the commutator associated with K and a ∈ L1(ℝd) by
$${T_a}f(x) = p.v.{\smallint _{{ℝ^d}}}K(x - y){m_{x,y}}af(y)dy$$
, which is an extension of the classical Calderón commutator. In this paper, we show that Ta is weighted weak type (1, 1) bounded with A1 weight for d ≥ 2.


Christ-Journé type commutator weighted weak type (1, 1) A1 weight 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (Grant Nos. 11371057, 11471033 and 11571160), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130003110003), and the Fundamental Research Funds for the Central Universities (Grant No. 2014KJJCA10). The authors express their gratitude to the referees for their very careful reading and valuable suggestions.


  1. 1.
    Calderón A P. Commutators of singular integral operators. Proc Natl Acad Sci USA, 1965, 53: 1092–1099MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Christ M, Journé J-L. Polynomial growth estimates for multilinear singular integral operators. Acta Math, 1987, 159: 51–80MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ding Y, Lai X. Weighted bound for commutators. J Geom Anal, 2015, 25: 1915–1938MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ding Y, Lai X. Weak type (1, 1) bound criterion for singular integral with rough kernel and its applications. Trans Amer Math Soc, 2017, in press 5 Ding Y, Lai X. On a singular integral of Christ-Journé type with homogeneous kernel. Canad Math Bull, 2018, 61: 97–113Google Scholar
  5. 6.
    Duoandikoetxea J. Weighted norm inequalities for homogeneous singular integrals. Trans Amer Math Soc, 1993, 336: 869–880MathSciNetCrossRefMATHGoogle Scholar
  6. 7.
    Fan D S, Sato S. Weak type (1, 1) estimates for Marcinkiewicz integrals with rough kernels. Tohoku Math J (2), 2001, 53: 265–284MathSciNetCrossRefMATHGoogle Scholar
  7. 8.
    García-Cuerva J, Rubio de Francia J. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland, 1985MATHGoogle Scholar
  8. 9.
    Grafakos L. Classic Fourier Analysis, 3rd ed. New York: Springer, 2014Google Scholar
  9. 10.
    Grafakos L, Honzík L. A weak-type estimate for commutators. Int Math Res Not IMRN, 2012, 20: 4785–4796MathSciNetCrossRefMATHGoogle Scholar
  10. 11.
    Hofmann S. Boundedness criteria for rough singular integrals. Proc Lond Math Soc (3), 1995, 3: 386–410MathSciNetCrossRefMATHGoogle Scholar
  11. 12.
    Seeger A. Singular integral operators with rough convolution kernels. J Amer Math Soc, 1996, 9: 95–105MathSciNetCrossRefMATHGoogle Scholar
  12. 13.
    Seeger A. A weak type bound for a singular integral. Rev Mat Iberoam, 2014, 30: 961–978MathSciNetCrossRefMATHGoogle Scholar
  13. 14.
    Vargas A. Weighted weak type (1, 1) bounds for rough kernels. J Lond Math Soc (2), 1996, 54: 297–310CrossRefMATHGoogle Scholar
  14. 15.
    Watson D. Weighted estimates for singular integrals via Fourier transform estimates. Duke Math J, 1990, 60: 389–399MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal UniversityBeijingChina
  2. 2.Institute for Advanced Study in MathematicsHarbin Institute of TechnologyHarbinChina

Personalised recommendations