Skip to main content
Log in

Qualitative analysis for a Wolbachia infection model with diffusion

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider a reaction-diffusion model which describes the spatial Wolbachia spread dynamics for a mixed population of infected and uninfected mosquitoes. By using linearization method, comparison principle and Leray-Schauder degree theory, we investigate the influence of diffusion on the Wolbachia infection dynamics. After identifying the system parameter regions in which diffusion alters the local stability of constant steady-states, we find sufficient conditions under which the system possesses inhomogeneous steady-states. Surprisingly, our mathematical analysis, with the help of numerical simulations, indicates that diffusion is able to lower the threshold value of the infection frequency over which Wolbachia can invade the whole population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bian G W, Xu Y, Lu P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog, 2010, 6: e1000833

    Article  Google Scholar 

  2. Calisher C H. Persistent emergence of dengue. Emerg Infect Dis, 2005, 11: 738–739

    Article  Google Scholar 

  3. Caspari E, Watson G S. On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 1959, 13: 568–570

    Article  Google Scholar 

  4. Casten R G, Holland C J. Stability properties of solutions to systems of reaction-diffusion equations. SIAM J Appl Math, 1977, 33: 353–364

    Article  MathSciNet  MATH  Google Scholar 

  5. Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin-New York: Springer-Verlag, 1981

    MATH  Google Scholar 

  6. Hoffmann A A, Montgomery B L, Popovici J, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 2011, 476: 454–457

    Article  Google Scholar 

  7. Hoffmann A A, Turelli M. Cytoplasmic incompatibility in insects. In: Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford: Oxford University Press, 1997, 42–80

    Google Scholar 

  8. Hoffmann A A, Turelli M, Harshman L G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics, 1990, 126: 933–948

    Google Scholar 

  9. Hu L C, Huang M G, Tang M X, et al. Wolbachia spread dynamics in stochastic environments. Theo Popu Bio, 2015, 106: 32–44

    Article  Google Scholar 

  10. Huang M G, Tang M X, Yu J S. Wolbachia infection dynamics by reaction-diffusion equations. Sci China Math, 2015, 58: 77–96

    Article  MathSciNet  MATH  Google Scholar 

  11. Iida M, Muramatsu T, Ninomiya H, et al. Diffusion-induced extinction of a superior species in a competition system. Japan J Indust Appl Math, 1998, 15: 233–252

    Article  MathSciNet  MATH  Google Scholar 

  12. Iturbe-Ormaetxe I, Walker T, O’Neill S L. Wolbachia and the biological control of mosquito-borne disease. EMBO Reports, 2011, 12: 508–518

    Article  Google Scholar 

  13. Jiang J F, Liang X, Zhao X Q. Saddle point behavior for monotone semiflows and reaction diffusion models. J Differential Equations, 2004, 203: 313–330

    Article  MathSciNet  MATH  Google Scholar 

  14. Keeling M J, Jiggins F M, Read J M. The invasion and coexistence of competing Wolbachia strains. Heredity, 2003, 91: 382–388

    Article  Google Scholar 

  15. Kishimoto K, Weinberger H. The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains. J Differential Equations, 1985, 58: 15–21

    Article  MathSciNet  MATH  Google Scholar 

  16. Kyle J L, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol, 2008, 62: 71–92

    Article  Google Scholar 

  17. Mcmeniman C J, Lane R V, Cass B N, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science, 2009, 323: 141–144

    Article  Google Scholar 

  18. Ni W-M, Tang M X. Turing patterns in the Lengyel-Epstwin system for the CIMA rection. Trans Amer Math Soc, 2005, 357: 3953–3969

    Article  MathSciNet  MATH  Google Scholar 

  19. Nirenberg L. Topics in Nonlinear Functional Analysis. New York: Courant Institute of Mathematical Science, 1973

    Google Scholar 

  20. Pang Y, Wang M X. Non-constant positive steady-states of a predator-prey system with non-monotonic functional response and diffusion. Proc Lond Math Soc, 2004, 88: 137–157

    Article  MathSciNet  MATH  Google Scholar 

  21. Protter M H, Weinberger H F. Maximum Principles in Differential Equations. Berlin-New York: Springer-Verlag, 1984

    Book  MATH  Google Scholar 

  22. Rabinowitz P. Some global results for nonlinear eigenvalue problems. J Funct Anal, 1971, 7: 487–513

    Article  MathSciNet  MATH  Google Scholar 

  23. Smith H L. Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems. Providence: Amer Math Soc, 1995

    MATH  Google Scholar 

  24. Turelli M, Hoffmann A A. Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol, 1999, 8: 243–255

    Article  Google Scholar 

  25. Turing A M. The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B, 1952, 237: 37–72

    Article  Google Scholar 

  26. Walker T, Johnson P H, Moreira L A, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 2011, 476: 450–453

    Article  Google Scholar 

  27. Weinberger H F. Invariant sets for weakly coupled parabolic and elliptic systems. Rend Mat, 1975, 8: 295–310

    MathSciNet  MATH  Google Scholar 

  28. Xi Z, Dean J L, Khoo C, et al. Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochem Mol Biol, 2005, 35: 903–910

    Article  Google Scholar 

  29. Xi Z, Khoo C C, Dobson S L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science, 2005, 310: 326–328

    Article  Google Scholar 

  30. Zheng B, Tang M X, Yu J S. Modeling Wolbachia spread in mosquitoes through delay differential equation. SIAM J Appl Math, 2014, 74: 743–770

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianShe Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Yu, J., Hu, L. et al. Qualitative analysis for a Wolbachia infection model with diffusion. Sci. China Math. 59, 1249–1266 (2016). https://doi.org/10.1007/s11425-016-5149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-5149-y

Keywords

MSC(2010)

Navigation