Skip to main content
Log in

Local solvability of the k-Hessian equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ k [u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be (k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Base on this classification, we obtain the existence of C local solution for nonhomogeneous term f without sign assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac S, Gérard P. Pseudo-differential Operators and the Nash-Moser Theorem. Providence, RI: Amer Math Soc, 2007

    Book  MATH  Google Scholar 

  2. Caffarelli L. Interior W 2,p Estimates for Solutions of the Monge-Ampère Equation. Ann Math, 1990, 131: 135–150

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli L, Nirenberg L, Spruck J. Dirichlet problem for nonlinear second order elliptic equations III: Functions of the eigenvalues of the Hessian. Acta Math, 1985, 155: 261–301

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen T, Han Q. Smooth local solutions to Weingarten equations and σk equations. Discrete Contin Dyn Syst, 2015, 36: 653–660

    Article  MathSciNet  Google Scholar 

  5. Gårding L. An inequality for hyperbolic polynomials. J Math Mech, 1959, 8: 957–965

    MathSciNet  Google Scholar 

  6. Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983

    Book  MATH  Google Scholar 

  7. Guan B, Spruck J. Locally convex hypersurfaces of constant curvature with boundary. Comm Pure Appl Math, 2004, 57: 1311–1331

    Article  MathSciNet  MATH  Google Scholar 

  8. Guan P, Ma X-N. The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation. Invent Math, 2003, 151: 553–577

    Article  MathSciNet  MATH  Google Scholar 

  9. Guan P, Trudinger N S, Wang X-J. On the Dirichlet problem for degenerate Monge-Ampère equations. Acta Math, 1999, 182: 87–104

    Article  MathSciNet  MATH  Google Scholar 

  10. Han Q. Local solutions to a class of Monge-Ampère equations of mixed type. Duke Math J, 2007, 136: 401–618

    MathSciNet  Google Scholar 

  11. Han Q, Hong J X. Isometric Embeddings of Riemannian Manifolds in Euclidean Spaces. Providence, RI: Amer Math Soc, 2006

    Book  MATH  Google Scholar 

  12. Hong J X. Dirichlet problems for general Monge-Ampère equations. Math Z, 1992, 209: 289–306

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong J X, Huang G, Wang W. Existence of global smooth solutions to Dirichlet problem for degenrate elliptic Monge-Ampère equations. Comm Partial Differential Equations, 2011, 36: 635–656

    Article  MathSciNet  MATH  Google Scholar 

  14. Hong J X, Zuily C. Exitence of C local solutions for the Monge-Ampère equation. Invent Math, 1987, 89: 645–661

    Article  MathSciNet  MATH  Google Scholar 

  15. Ivochkina N M. A description of the stability cones generated by differential operators of Monge-Ampère type. Math USSR Sbornik, 1985, 50: 259–268

    Article  MATH  Google Scholar 

  16. Ivochkina N M, Prokofeva S I, Yakunina G V. The Gårding cones in the modern theory of fully nonlinear second order differential equations. J Math Sci, 2012, 184: 295–315

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivochkina N M, Trudinger N S, Wang X-J. The Dirichlet problem for degenerate Hessian equations. Comm Partial Differential Equations, 2004, 29: 219–235

    Article  MathSciNet  MATH  Google Scholar 

  18. Li M, Trdudinger N S. On some inequalities for elementary symmetric functions. Bull Austral Math Soc, 1994, 50: 317–326

    Article  MathSciNet  Google Scholar 

  19. Li Q-R, Wang X-J. Regularity of the homogeneous Monge-Ampère equation. Discrete Contin Dyn Syst, 2015, 35: 6069–6084

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieberman G M. Second Order Parabolic Differential Equations. Singapore: World Scientific Publishing, 1996

    Book  MATH  Google Scholar 

  21. Lin C S. The local isometric embedding in R3 of 2-dimensional Riemannian manifolds with nonnegative curvature. J Differential Geom, 1985, 21: 213–230

    MathSciNet  MATH  Google Scholar 

  22. Lin C S. The local isometric embedding in R3 of two dimensinal Riemannian manifolds with Gaussian curvature changing sign clearly. Comm Pure Appl Math, 1986, 39: 867–887

    Article  MathSciNet  Google Scholar 

  23. Savin O. Pointwise C 2,α estimates at the boundary for the Monge-Ampère equation. J Amer Math Soc, 2013, 26: 63–99

    Article  MathSciNet  MATH  Google Scholar 

  24. Savin O. Global W 2,p estimates for the Monge-Ampère equation. Proc Amer Math Soc, 2013, 141: 3573–3578

    Article  MathSciNet  MATH  Google Scholar 

  25. Trudinger N S, Wang X-J. Boundary regularity for the Monge-Ampère and affine maximal surface equations. Ann Math, 2008, 167: 993–1028

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang Q, Xu C-J. C 1,1 solution of the Dirichlet problem for degenerate k-Hessian equations. Nonlinear Anal, 2014, 104: 133–146

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang X-J. Some counterexamples to the regularity of Monge-Ampère equations. Proc Amer Math Soc, 1995, 123: 841–845

    MathSciNet  MATH  Google Scholar 

  28. Wang X-J. The k-Hessian Equation. Dordrecht: Springer, 2009

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Wang, Q. & Xu, CJ. Local solvability of the k-Hessian equations. Sci. China Math. 59, 1753–1768 (2016). https://doi.org/10.1007/s11425-016-5135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-5135-4

Keywords

MSC(2010)

Navigation