Skip to main content
Log in

Quantitative properties of ground-states to an M-coupled system with critical exponent in ℝN

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the ground-states of the following M-coupled system:

$$\left\{ {\begin{array}{*{20}{c}} { - \Delta {u_i} = \sum\limits_{j = 1}^M {{k_{ij}}\frac{{2{q_{ij}}}}{{2*}}{{\left| {{u_j}} \right|}^{{p_{ij}}}}{{\left| {{u_i}} \right|}^{{q_{ij}} - {2_{{u_i}}}}},x \in {\mathbb{R}^N},} } \\ {{u_i} \in {D^{1,2}}\left( {{\mathbb{R}^N}} \right),i = 1,2, \ldots ,M,} \end{array}} \right.$$

where \(p_{ij} + q_{ij} = 2*: = \frac{{2N}} {{N - 2}}(N \geqslant 3)\). We prove the existence of ground-states to the M-coupled system. At the same time, we not only give out the characterization of the ground-states, but also study the number of the ground-states, containing the positive ground-states and the semi-trivial ground-states, which may be the first result studying the number of not only positive ground-states but also semi-trivial ground-states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev N, Ankiewicz A. Partially coherent solitons on a finite background. Phys Rev Lett, 1999, 82: 26–61

    Article  Google Scholar 

  2. Ambrosetti A, Colorado E. Bound and ground-states of coupled nonlinear Schrödinger equations. C R Math Acad Sci Paris, 2006, 342: 453–458

    Article  MathSciNet  MATH  Google Scholar 

  3. Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486–490

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen Z, Zou W. Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch Ration Mech Anal, 2012, 205: 515–551

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Z, Zou W. An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc Var Partial Differential Equations, 2013, 48: 695–711

    Article  MathSciNet  MATH  Google Scholar 

  6. Correia S. Characterization of ground-states for a system of M coupled semilinear Schrödinger equations and applications. J Differential Equations, 2016, 260: 3302–3326

    Article  MathSciNet  MATH  Google Scholar 

  7. Correia S. Ground-states for systems of M coupled semilinear Schrödinger equations with attraction-repulsion effects: Characterization and perturbation results. Nonlinear Anal, 2016, 140: 112–129

    Article  MathSciNet  MATH  Google Scholar 

  8. Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II: Normal dispersion. Appl Phys Lett, 1973, 23: 171–172

    Article  Google Scholar 

  9. He Q, Peng S J, Peng Y F. Existence, non-degeneracy and proportion of positive solution for a fractional elliptic equations in ℝN. Adv Difference Equ, 2017, in press

    Google Scholar 

  10. Lin T C, Wei J. Ground state of N coupled nonlinear Schrödinger equations in ℝn; n ≤ 3. Comm Math Phys, 2005, 255: 629–653

    Article  MathSciNet  MATH  Google Scholar 

  11. Lions P L. The concentration-compactness principle in the calculus of variations: The locally compact case. I. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109–145

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions P L. The concentration-compactness principle in the calculus of variations: The locally compact case. II. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 223–283

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma L, Zhao L. Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application. J Differential Equations, 2008, 245: 2551–2565

    Article  MathSciNet  MATH  Google Scholar 

  14. Struwe M. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math Z, 1984, 187: 511–517

    Article  MathSciNet  MATH  Google Scholar 

  15. Swanson C A. The best Sobolev constant. Appl Anal, 1992, 47: 227–239

    Article  MathSciNet  MATH  Google Scholar 

  16. Talenti G. Best constant in Sobolev inequality. Ann Mat Pura Appl (4), 1976, 110: 353–372

    Article  MathSciNet  MATH  Google Scholar 

  17. Wei J, Yao W. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun Pure Appl Anal, 2012, 11: 1003–1011

    MathSciNet  MATH  Google Scholar 

  18. Zakharov V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J Appl Mech Tech Phys, 1968, 9: 190–194

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11601194) and PhD Start-Up Funds of Jiangsu University of Science and Technology (Grant Nos. 1052931601 and 1052921513). The authors sincerely thank Professor S. Peng for helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Yang, J. Quantitative properties of ground-states to an M-coupled system with critical exponent in ℝN. Sci. China Math. 61, 709–726 (2018). https://doi.org/10.1007/s11425-016-0464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0464-4

Keywords

MSC(2010)

Navigation