Skip to main content
Log in

A sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the block orthogonal multi-matching pursuit (BOMMP) algorithm for the recovery of block sparse signals. A sharp condition is obtained for the exact reconstruction of block K-sparse signals via the BOMMP algorithm in the noiseless case, based on the block restricted isometry constant (block-RIC). Moreover, we show that the sharp condition combining with an extra condition on the minimum ℓ2 norm of nonzero blocks of block K-sparse signals is sufficient to ensure the BOMMP algorithm selects at least one true block index at each iteration until all true block indices are selected in the noisy case. The significance of the results we obtain in this paper lies in the fact that making explicit use of block sparsity of block sparse signals can achieve better recovery performance than ignoring the additional structure in the problem as being in the conventional sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai Y, Li S. Convergence analysis of projected gradient descent for schatten-p nonconvex matrix recovery. Sci China Math, 2015, 58: 845–858

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès E J. The restricted isometry property and its implications for compressed sensing. C R Math Acad Sci Paris, 2008, 346: 589–592

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès E J, Romberg J K, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory, 2006, 52: 489–509

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès E J, Tao T T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51: 4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen J, Huo X. Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans Signal Process, 2006, 54: 4634–4643

    Article  Google Scholar 

  6. Chen S, Billings S A, Luo W. Orthogonal least squarses methods and their application to non-linear system identification. Internat J Control, 1989, 50: 1873–1896

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen W G, Ge H M. A sharp bound on RIC in generalized orthogonal matching pursuit. ArXiv:1604.03306, 2016

    Google Scholar 

  8. Chen W G, Li Y L. Stable recovery of low-rank matrix via nonconvex schatten p-minimization. Sci China Math, 2015, 58: 2643–2654

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen W G, Wu G Q. Harmonic analysis and research on the channel coding and decoding (in Chinese). Sci Sin Math, 2014, 44: 447–456

    Article  MathSciNet  Google Scholar 

  10. Cotter S F, Rao B D. Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans Commun, 2002, 50: 374–377

    Article  Google Scholar 

  11. Cotter S F, Rao B D, Engan K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process, 2005, 53: 2477–2488

    Article  MathSciNet  Google Scholar 

  12. Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inform Theory, 2009, 55: 2230–2249

    Article  MathSciNet  Google Scholar 

  13. Dan W, Wang R H. Robustness of orthogonal matching pursuit under restricted isometry property. Sci China Math, 2014, 57: 627–634

    Article  MathSciNet  MATH  Google Scholar 

  14. Dan W. Analysis of orthogonal multi-matching pursuit under restricted isometry property. Sci China Math, 2014, 57: 2179–2188

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho D L. Compressed sensing. IEEE Trans Inform Theory, 2006, 52: 1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho D L, Drori I, Tsaig Y, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inform Theory, 2012, 58: 1094–1121

    Article  MathSciNet  Google Scholar 

  17. Eldar Y C, Kuppinger P, Bölcskei H. Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans Signal Process, 2010, 58: 3042–3054

    Article  MathSciNet  Google Scholar 

  18. Eldar Y C, Mishali M. Robust recovery of signals from a structured union of subspaces. IEEE Trans Inform Theory, 2009, 55: 5302–5316

    Article  MathSciNet  Google Scholar 

  19. Eldar Y C, Mishali M. Block-sparsity and sampling over a union of subspaces. In: DSP’09 Proceedings of the 16th International Conference on Digital Signal Processing. Piscataway: IEEE Press, 2009, 1–8

    Google Scholar 

  20. Fu Y, Li H, Zhang Q, et al. Block-sparse recovery via redundant block OMP. Signal Process, 2014, 97: 162–171

    Article  Google Scholar 

  21. Huang B X, Zhou T. Recovery of block sparse signals by a block version of StOMP. Signal Process, 2015, 109: 231–244

    Article  Google Scholar 

  22. Huang J, Zhang T. The benefit of group sparsity. Ann Stat, 2010, 38: 1978–2004

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin J H, Li S. Block Sparse Recovery via mixed ℓ2/ℓ1 minimization. Acta Math Sinica, 2013, 46: 364–375

    Google Scholar 

  24. Lin J H, Li S. Nonuniform support recovery from noisy random measurements by orthogonal matching pursuit. J Approx Theory, 2013, 165: 20–40

    Article  MathSciNet  MATH  Google Scholar 

  25. Majumdar A, Ward R K. Compressed sensing of color images. Signal Process, 2010, 90: 3122–3127

    Article  MATH  Google Scholar 

  26. Mishali M, Eldar Y C. Reduce and boost: Recovering arbitrary sets of jointly sparse vectors. IEEE Trans Signal Process, 2008, 56: 4692–4702

    Article  MathSciNet  Google Scholar 

  27. Mishali M, Eldar Y C. Blind multi-band signal reconstruction: Compressed sensing for analog signals. IEEE Trans Signal Process, 2009, 57: 993–1009

    Article  MathSciNet  Google Scholar 

  28. Mishali M, Eldar Y C, Dounaevsky O, et al. Xampling: Analog to digital at sub-Nyquist rates. Circuits Devices Syst IET, 2011, 5: 8–20

    Article  Google Scholar 

  29. Mo Q. A sharp restricted isometry constant bound of orthogonal matching pursuit. ArXiv:1501.01708, 2015

    Google Scholar 

  30. Mo Q, Shen Y. A Remark on the restricted isometry property in orthogonal matching pursuit. IEEE Trans Inform Theory, 2012, 58: 3654–3656

    Article  MathSciNet  Google Scholar 

  31. Needell D, Troop J A. CoSaMP: Itertive signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal, 2009, 26: 301–321

    Article  MathSciNet  MATH  Google Scholar 

  32. Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Top Signal Process, 2010, 4: 310–316

    Article  Google Scholar 

  33. Parvaresh F, Vikalo H, Misra S, et al. Recovering sparse signals using sparse measurement matrices incompressed DNA microarrays. IEEE J Sel Top Signal Process, 2008, 2: 275–285

    Article  Google Scholar 

  34. Shen Y, Li S. Sparse signals recovery from noisy measurements by orthogonal matching pursuit. Inverse Probl Imaging, 2015, 9: 231–238

    Article  MathSciNet  MATH  Google Scholar 

  35. Stojnic M, Parvaresh F, Hassibi B. On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans Signal Process, 2010, 57: 3075–3085

    Article  MathSciNet  Google Scholar 

  36. Sun Q Y. Recovery of sparsest signals via l q-minimization. Appl Comput Harmon Anal, 2012, 32: 329–341

    Article  MathSciNet  MATH  Google Scholar 

  37. Swirszcz G, Abe N, Lozano A C. Grouped orthogonal matching pursuit for variable selection and prediction. Adv Neural Inf Process Syst, 2009, 22: 1150–1158

    Google Scholar 

  38. Tropp J A. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Process, 2006, 86: 572–588

    MATH  Google Scholar 

  39. Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory, 2007, 53: 4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang J, Kwon S, Shim B. Generalized orthogonal matching pursuit. IEEE Trans Signal Process, 2012, 60: 6202–6216

    Article  MathSciNet  Google Scholar 

  41. Wang J, Shim B. On the recovery limit of sparse signals using orthogonal matching pursuit. IEEE Trans Signal Process, 2012, 60: 4973–4976

    Article  MathSciNet  Google Scholar 

  42. Wang Y, Wang J J, Xu Z B. On recovery of block-sparse signals via mixed ℓ2/ℓp (0 < p ≤ 1) norm minimization. Eurasip J Adv Signal Process, 2013, 76: 1–17

    Google Scholar 

  43. Wang Y, Wang J J, Xu Z B. Restricted p-isometry properties of nonconvex block-sparse compressed sensing. Signal Process, 2014, 104: 188–196

    Article  Google Scholar 

  44. Wen J M, Zhou Z C, Li D F, et al. Improved sufficient conditions for sparse recovery with generalized orthogonal matching pursuit. ArXiv:1603.01507, 2016

    Google Scholar 

  45. Wen J M, Zhou Z C, Liu Z, et al. Sharp sufficient conditions for stable recovery of block sparse signals by block orthogonal matching pursuit. ArXiv:1605.02894, 2016

    Google Scholar 

  46. Wu R, Huang W, Chen D R. The exact support recovery of sparse signals with noise via orthogonal matching pursuit. IEEE Signal Proc Lett, 2013, 20: 403–406

    Article  Google Scholar 

  47. Xu Y, Qiu X H. Block-sparse signals recovery using orthogonal multimatching. J Signal Process, 2014, 30: 706–711

    Google Scholar 

  48. Xu Z Q. Compressed sensing: A survey (in Chinese). Sci Sin Math, 2012, 42: 865–877

    Article  Google Scholar 

  49. Xu Z Q. The performance of orthogonal multi-matching pursuit under RIP. J Comput Math, 2015, 33: 495–516

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao Q, Wang J, Han Y, et al. Compressive sensing of block-sparse signals recovery based on sparsity adaptive regularized orthogonal matching pursuit algorithm. In: IEEE Fifth International Conference on Advanced Computational Intelligence. New York: IEEE, 2012, 1141–1144

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11271050 and 11371183). The authors thank the referees for their valuable comments that improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenGu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Ge, H. A sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit. Sci. China Math. 60, 1325–1340 (2017). https://doi.org/10.1007/s11425-016-0448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0448-7

Keywords

MSC(2010)

Navigation