Skip to main content
Log in

Decay estimates of discretized Green’s functions for Schrödinger type operators

Science China Mathematics Aims and scope Submit manuscript

Abstract

For a sparse non-singular matrix A, generally A −1 is a dense matrix. However, for a class of matrices, A −1 can be a matrix with off-diagonal decay properties, i.e., |A ij −1| decays fast to 0 with respect to the increase of a properly defined distance between i and j. Here we consider the off-diagonal decay properties of discretized Green’s functions for Schrödinger type operators. We provide decay estimates for discretized Green’s functions obtained from the finite difference discretization, and from a variant of the pseudo-spectral discretization. The asymptotic decay rate in our estimate is independent of the domain size and of the discretization parameter. We verify the decay estimate with numerical results for one-dimensional Schrödinger type operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon S. On kernels, eigenvalues, and eigenfunctoins of operators related to elliptic problems. Comm Pure Appl Math, 1965, 18: 627–663

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi M, Boito P, Razouk N. Decay properties of spectral projectors with applications to electronic structure. SIAM Rev, 2013, 55: 3–64

    Article  MathSciNet  MATH  Google Scholar 

  3. Benzi M, Meyer C D, Tuma M. A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J Sci Comput, 1996, 17: 1135–1149

    Article  MathSciNet  MATH  Google Scholar 

  4. Benzi M, Razouk N. Decay bounds and O(n) algorithms for approximating functions of sparse matrices. Electron Trans Numer Anal, 2007, 28: 16–39

    MathSciNet  MATH  Google Scholar 

  5. Benzi M, Tuma M. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J Sci Comput, 1998, 19: 968–994

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowler DR, Miyazaki T. O(N) methods in electronic structure calculations. Rep Prog Phys, 2012, 75: 036503

    Article  Google Scholar 

  7. Chen J, Lu J. Analysis of the divide-and-conquer method for electronic structure calculations. Math Comp, 2014, in press

    Google Scholar 

  8. Combes J M, Thomas L. Asymptotic behavior of eigenfunctions for multi-particle Schrödinger operators. Commun Math Phys, 1973, 34: 251–270

    Article  MathSciNet  MATH  Google Scholar 

  9. Demko S. Inverses of band matrices and local convergence of spline projections. SIAM J Numer Anal, 1977, 14: 616–619

    Article  MathSciNet  MATH  Google Scholar 

  10. Demko S, Moss W F, Smith P W. Decay rates for inverses of band matrices. Math Comp, 1984, 43: 491–499

    Article  MathSciNet  MATH  Google Scholar 

  11. E W, Lu J. The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy-Born rule. Arch Ration Mech Anal, 2011, 199: 407–433

    Article  MathSciNet  MATH  Google Scholar 

  12. E W, Lu J. The Kohn-Sham Equation for Deformed Crystals. Providence: Amer Math Soc, 2013

    Google Scholar 

  13. Goedecker S. Linear scaling electronic structure methods. Rev Mod Phys, 1999, 71: 1085–1123

    Article  Google Scholar 

  14. Johnson S G. Saddle-point integration of C “bump” functions. ArXiv:1508.04376, 2015

    Google Scholar 

  15. Kohn W. Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett, 1996, 76: 3168–3171

    Article  Google Scholar 

  16. Kohn W, Sham L. Self-consistent equations including exchange and correlation effects. Phys Rev A, 1965, 140: 1133–1138

    Article  MathSciNet  Google Scholar 

  17. Lin L. Localized spectrum slicing. ArXiv:1411.6152, 2014

    Google Scholar 

  18. Prodan E, Kohn W. Nearsightedness of electronic matter. Proc Natl Acad Sci USA, 2005, 102: 11635–11638

    Article  Google Scholar 

  19. Saad Y. ILUT: A dual threshold incomplete LU factorization. Numer Linear Algebra Appl, 1994, 1: 387–402

    Article  MathSciNet  MATH  Google Scholar 

  20. Simon B. Semiclassical analysis of low lying eigenvalues, I: Nondegenerate minima: Asymptotic expansions. Ann Inst H Poincaré Sect A, 1983, 38: 295–308

    MathSciNet  MATH  Google Scholar 

  21. Thomée V, Westergren B. Elliptic difference equations and interior regularity. Numer Math, 1968, 11: 196–210

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang W. Direct calculation of electron density in density-functional theory. Phys Rev Lett, 1991, 66: 1438–1441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Lu, J. Decay estimates of discretized Green’s functions for Schrödinger type operators. Sci. China Math. 59, 1561–1578 (2016). https://doi.org/10.1007/s11425-016-0311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0311-4

Keywords

MSC(2010)

Navigation