Skip to main content
Log in

A note on semidefinite programming relaxations for polynomial optimization over a single sphere

Science China Mathematics Aims and scope Submit manuscript

Abstract

We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations methods. The other one arises from Bose-Einstein condensates (BEC), whose objective function is a summation of a probably nonconvex quadratic function and a quartic term. These two polynomial optimization problems are closely connected since the BEC problem can be viewed as a structured fourth-order best rank-1 tensor approximation. We show that the BEC problem is NP-hard and propose a semidefinite relaxation with both deterministic and randomized rounding procedures. Explicit approximation ratios for these rounding procedures are presented. The performance of these semidefinite relaxations are illustrated on a few preliminary numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Absil P A, Mahony R, Sepulchre R. Optimization Algorithms on Matrix Manifolds. Princeton: Princeton University Press, 2008

    Book  MATH  Google Scholar 

  2. Bao W, Cai Y, Wang H. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates. J Comput Phys, 2010, 229: 7874–7892

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao W, Chern I L, Zhang Y. Efficient numerical methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations. J Comput Phys, 2013, 253: 189–208

    Article  MathSciNet  Google Scholar 

  4. Bao W, Wang H. A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates. SIAM J Numer Anal, 2007, 45: 2177–2200

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao W, Wang H. Ground states and dynamics of spin-orbit-coupled Bose-Einstein condensates. SIAM J Appl Math, 2015, 7: 492–517

    Article  MathSciNet  MATH  Google Scholar 

  6. Bar W, Dittrich F. Useful formula for moment computation of normal random variables with nonzero means. IEEE Trans Automat Control, 1971, 16: 263–265

    Article  Google Scholar 

  7. Burer S, Monteiro R D C. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math Program, 2003, 95: 329–357

    Article  MathSciNet  MATH  Google Scholar 

  8. Danaila I, Kazemi P. A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation. SIAM J Sci Comput, 2010, 32: 2447–2467

    Article  MathSciNet  MATH  Google Scholar 

  9. De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(r 1, r 2,..., r n) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21: 1324–1342

    Article  MathSciNet  MATH  Google Scholar 

  10. Fetter A L. Rotating trapped Bose-Einstein condensates. Rev Mod Phys, 2009, 81: 647–691

    Article  Google Scholar 

  11. Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: Freeman, 1979

    MATH  Google Scholar 

  12. He S, Jiang B, Li Z, et al. Probability bounds for polynomial functions in random variables. Math Oper Res, 2014, 39: 889–907

    Article  MathSciNet  MATH  Google Scholar 

  13. He S, Li Z, Zhang S. Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math Program Ser B, 2010, 125: 353–383

    Article  MathSciNet  MATH  Google Scholar 

  14. He S, Luo Z-Q, Nie J, et al. Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization. SIAM J Optim, 2008, 19: 503–523

    Article  MathSciNet  MATH  Google Scholar 

  15. Hilling J J, Sudbery A. The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J Math Phys, 2010, 51: 72–102

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu S, Huang Z H, Qi L. Finding the extreme Z-eigenvalues of tensors via a sequential semidefinite programming method. Numer Linear Algebra Appl, 2013, 20: 972–984

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang B, Ma S, Zhang S. Tensor principal component analysis via convex optimization. Math Program Ser A, 2015, 150: 423–457

    Article  MathSciNet  MATH  Google Scholar 

  18. Kofidis E, Regalia P. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J Matrix Anal Appl, 2002, 23: 863–884

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolda T G, Mayo J R. Shifted power method for computing tensor eigenpairs. SIAM J Matrix Anal Appl, 2011, 32: 1095–1124

    Article  MathSciNet  MATH  Google Scholar 

  20. Leggett A J. Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev Mod Phys, 2001, 73: 307–356

    Article  Google Scholar 

  21. Matthews M R, Anderson B P, Haljan P C, et al. Vortices in a Bose-Einstein condensate. Phys Rev Lett, 1999, 83: 2498–2501

    Article  Google Scholar 

  22. Nie J, Wang L. Semidefinite relaxations for best rank-1 tensor approximations. SIAM J Matrix Anal Appl, 2014, 35: 1155–1179

    Article  MathSciNet  MATH  Google Scholar 

  23. Nocedal J, Wright S J. Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd ed. New York: Springer, 2006

    Google Scholar 

  24. Raman C, Abo-Shaeer J R, Vogels J M, et al. Vortex nucleation in a stirred Bose-Einstein condensate. Phys Rev Lett, 2001, 87: 265–266

    Article  Google Scholar 

  25. So A M C. Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems. Math Program Ser B, 2011, 129: 357–382

    Article  MathSciNet  MATH  Google Scholar 

  26. Sturm J F, Zhang S. On cones of nonnegative quadratic functions. Math Oper Res, 2003, 28: 246–267

    Article  MathSciNet  MATH  Google Scholar 

  27. Wen Z, Yin W. A feasible method for optimization with orthogonality constraints. Math Program Ser A, 2013, 142: 397–434

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu X, Wen Z, Bao W. A regularized newton method for computing ground states of Bose-Einstein condensates. ArXiv:1504.02891, 2015

    Google Scholar 

  29. Zhang X, Ling C, Qi L. The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J Matrix Anal Appl, 2012, 33: 806–821

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Jiang, B., Liu, X. et al. A note on semidefinite programming relaxations for polynomial optimization over a single sphere. Sci. China Math. 59, 1543–1560 (2016). https://doi.org/10.1007/s11425-016-0301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0301-5

Keywords

MSC(2010)

Navigation