Skip to main content
Log in

An active set algorithm for nonlinear optimization with polyhedral constraints

Science China Mathematics Aims and scope Submit manuscript

Abstract

A polyhedral active set algorithm PASA is developed for solving a nonlinear optimization problem whose feasible set is a polyhedron. Phase one of the algorithm is the gradient projection method, while phase two is any algorithm for solving a linearly constrained optimization problem. Rules are provided for branching between the two phases. Global convergence to a stationary point is established, while asymptotically PASA performs only phase two when either a nondegeneracy assumption holds, or the active constraints are linearly independent and a strong second-order sufficient optimality condition holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bertsekas D P. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans Automat Control, 1976, 21: 174–184

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertsekas D P. Projected Newton methods for optimization problems with simple constraints. SIAM J Control Optim, 1982, 20: 221–246

    Article  MATH  MathSciNet  Google Scholar 

  3. Branch M, Coleman T, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput, 1999, 21: 1–23

    Article  MATH  MathSciNet  Google Scholar 

  4. Burke JV, Moré J J. On the identification of active constraints. SIAM J Numer Anal, 1988, 25: 1197–1211

    Article  MATH  MathSciNet  Google Scholar 

  5. Burke JV, Moré J J. Exposing constraints. SIAM J Optim, 1994, 25: 573–595

    Article  MATH  MathSciNet  Google Scholar 

  6. Burke JV, Moré J J, Toraldo G. Convergence properties of trust region methods for linear and convex constraints. Math Program, 1990, 47: 305–336

    Article  MATH  MathSciNet  Google Scholar 

  7. Calamai P, Moré J. Projected gradient for linearly constrained problems. Math Program, 1987, 39: 93–116

    Article  MATH  MathSciNet  Google Scholar 

  8. Coleman T F, Li Y. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math Program, 1994, 67: 189–224

    Article  MATH  MathSciNet  Google Scholar 

  9. Coleman T F, Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim, 1996, 6: 418–445

    Article  MATH  MathSciNet  Google Scholar 

  10. Coleman T F, Li Y. A trust region and affine scaling interior point method for nonconvex minimization with linear inequality constraints. Math Program, 2000, 88: 1–31

    Article  MATH  MathSciNet  Google Scholar 

  11. Conn A R, Gould N I M, Toint P L. Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J Numer Anal, 1988, 25: 433–460

    Article  MATH  MathSciNet  Google Scholar 

  12. Conn A R, Gould N I M, Toint P L. Trust-Region Methods. Philadelphia: SIAM, 2000

    Book  MATH  Google Scholar 

  13. Dembo R S, Tulowitzki U. On the minimization of quadratic functions subject to box constraints. Working paper. New Haven: Yale University, 1983

    Google Scholar 

  14. Dennis J E, Heinkenschloss M, Vicente L N. Trust-region interior-point algorithms for a class of nonlinear programming problems. SIAM J Control Optim, 1998, 36: 1750–1794

    Article  MATH  MathSciNet  Google Scholar 

  15. Dostál Z. Box constrained quadratic programming with proportioning and projections. SIAM J Optim, 1997, 7: 871–887

    Article  MATH  MathSciNet  Google Scholar 

  16. Dostál Z. A proportioning based algorithm for bound constrained quadratic programming with the rate of convergence. Numer Algorithms, 2003, 34: 293–302

    Article  MATH  MathSciNet  Google Scholar 

  17. Dostál Z, Friedlander A, Santos S A. Augmented Lagrangians with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J Optim, 2003, 13: 1120–1140

    Article  MATH  MathSciNet  Google Scholar 

  18. Facchinei F, Júdice J, Soares J. An active set Newton’s algorithm for large-scale nonlinear programs with box constraints. SIAM J Optim, 1998, 8: 158–186

    Article  MATH  MathSciNet  Google Scholar 

  19. Facchinei F, Lucidi S, Palagi L. A truncated Newton algorithm for large-scale box constrained optimization. SIAM J Optim, 2002, 4: 1100–1125

    Article  MATH  MathSciNet  Google Scholar 

  20. Forsgren A, Gill P E, Wong E. Active-set methods for convex quadratic programming. ArXiv:1503.08349, 2015

    Google Scholar 

  21. Friedlander A, Martínez J M, Santos S A. A new trust region algorithm for bound constrained minimization. Appl Math Optim, 1994, 30: 235–266

    Article  MATH  MathSciNet  Google Scholar 

  22. Friedlander M P, Leyffer S. Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programs. SIAM J Sci Comput, 2008, 30: 1706–1729

    Article  MATH  MathSciNet  Google Scholar 

  23. Gill P E, Wong E. Methods for convex and general quadratic programming. Math Prog Comp, 2014, 7: 71–112

    Article  MATH  MathSciNet  Google Scholar 

  24. Goldberg N, Leyffer S. An active-set method for second-order conic-constrained quadratic programming. SIAM J Optim, 2015, 25: 1455–1477

    Article  MATH  MathSciNet  Google Scholar 

  25. Goldstein A A. Convex programming in Hilbert space. Bull Amer Math Soc, 1964, 70: 709–710

    Article  MATH  MathSciNet  Google Scholar 

  26. Hager W W, Phan D T, Zhang H. Gradient-based methods for sparse recovery. SIAM J Imaging Sci, 2011, 4: 146–165

    Article  MATH  MathSciNet  Google Scholar 

  27. Hager W W, Zhang H. A new active set algorithm for box constrained optimization. SIAM J Optim, 2006, 17: 526–557

    Article  MATH  MathSciNet  Google Scholar 

  28. Hager W W, Zhang H. An affine scaling method for optimization problems with polyhedral constraints. Comput Optim Appl, 2014, 59: 163–183

    Article  MATH  MathSciNet  Google Scholar 

  29. Hager W W, Zhang H. Projection on a polyhedron that exploits sparsity. SIAM J Optim, 2015, in press

    Google Scholar 

  30. Heinkenschloss M, Ulbrich M, Ulbrich S. Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math Program, 1999, 86: 615–635

    Article  MATH  MathSciNet  Google Scholar 

  31. Hoffman A J. On approximate solutions of systems of linear inequalities. J Res National Bureau Standards, 1952, 49: 263–265

    Article  MathSciNet  Google Scholar 

  32. Izmailov A, Solodov M V. Newton-Type Methods for Optimization and Variational Problems. New York: Springer, 2014

    Book  MATH  Google Scholar 

  33. Kanzow C, Klug A. On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints. Comput Optim Appl, 2006, 35: 177–197

    Article  MATH  MathSciNet  Google Scholar 

  34. Lescrenier M. Convergence of trust region algorithms for optimization with bounds when strict complementarity does not hold. SIAM J Numer Anal, 1991, 28: 476–495

    Article  MATH  MathSciNet  Google Scholar 

  35. Levitin E S, Polyak B T. Constrained minimization problems. USSR Comput Math Math Phys, 1966, 6: 1–50

    Article  Google Scholar 

  36. Lin C-J, Moré J J. Newton’s method for large bound-constrained optimization problems. SIAM J Optim, 1999, 9: 1100–1127

    Article  MATH  MathSciNet  Google Scholar 

  37. McCormick G P, Tapia R A. The gradient projection method under mild differentiability conditions. SIAM J Control, 1972, 10: 93–98

    Article  MATH  MathSciNet  Google Scholar 

  38. Moré J J, Toraldo G. On the solution of large quadratic programming problems with bound constraints. SIAM J Optim, 1991, 1: 93–113

    Article  MATH  MathSciNet  Google Scholar 

  39. Polyak B T. The conjugate gradient method in extremal problems. USSR Comp Math Math Phys, 1969, 9: 94–112

    Article  MATH  Google Scholar 

  40. Robinson S M. Some continuity properties of polyhedral multifunctions. Math Prog Study, 1981, 14: 206–214

    Article  MATH  MathSciNet  Google Scholar 

  41. Robinson S M. Generalized equations and their solutions, part II: applications to nonlinear programming. Math Prog Study, 1982, 19: 200–221

    Article  MATH  Google Scholar 

  42. Schwartz A, Polak E. Family of projected descent methods for optimization problems with simple bounds. J Optim Theory Appl, 1997, 92: 1–31

    Article  MATH  MathSciNet  Google Scholar 

  43. Ulbrich M, Ulbrich S, Heinkenschloss M. Global convergence of trust-region interior-point algorithms for infinitedimensional nonconvex minimization subject to pointwise bounds. SIAM J Control Optim, 1999, 37: 731–764

    Article  MATH  MathSciNet  Google Scholar 

  44. Wen Z, Yin W, Goldfarb D, Zhang Y. A fast algorithm for sparse reconstruction based on shrinkage subspace optimization and continuation. SIAM J Sci Comp, 2010, 32: 1832–1857

    Article  MATH  MathSciNet  Google Scholar 

  45. Wen Z, Yin W, Zhang H, Goldfarb D. On the convergence of an active set method for L 1 minimization. Optim Methods Softw, 2012, 27: 1127–1146

    Article  MATH  MathSciNet  Google Scholar 

  46. Wright S J, Nowak R D, Figueiredo M A T. Sparse reconstruction by separable approximation. IEEE Trans Signal Process, 2009, 57: 2479–2493

    Article  MathSciNet  Google Scholar 

  47. Yang E K, Tolle J W. A class of methods for solving large convex quadratic programs subject to box constraints. Math Program, 1991, 51: 223–228

    Article  MATH  MathSciNet  Google Scholar 

  48. Zhang H, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization. SIAM J Optim, 2004, 14: 1043–1056

    Article  MATH  MathSciNet  Google Scholar 

  49. Zhang Y. Interior-point gradient methods with diagonal-scalings for simple-bound constrained optimization. Tech. Rep. TR04-06. Houston: Rice University, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hager, W.W., Zhang, H. An active set algorithm for nonlinear optimization with polyhedral constraints. Sci. China Math. 59, 1525–1542 (2016). https://doi.org/10.1007/s11425-016-0300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0300-6

Keywords

MSC(2010)

Navigation