Skip to main content
Log in

Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods

Science China Mathematics Aims and scope Submit manuscript

Abstract

The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson E, Bai Z, Bischof C, et al. LAPACK Users’ Guide, 3rd ed. Philadelphia: SIAM, 1999

    Book  MATH  Google Scholar 

  2. Bai Z, Li R-C. Minimization principles for the linear response eigenvalue problem, I: Theory. SIAM J Matrix Anal Appl, 2012, 33: 1075–1100

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai Z, Li R-C. Minimization principle for the linear response eigenvalue problem, II: Computation. SIAM J Matrix Anal Appl, 2013, 34: 392–416

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai Z, Li R-C. Minimization principles and computation for the generalized linear response eigenvalue problem. BIT Numer Math, 2014, 54: 31–54

    Article  MathSciNet  MATH  Google Scholar 

  5. Carson E. Communication-avoiding Krylov Subspace Methods in Theory and Practice. PhD thesis. Berkeley: University of California, 2015

    Google Scholar 

  6. Carson E, Demmel J. Accuracy of the s-step Lanczos method for the symmetric eigenproblem in finite precision. SIAM J Matrix Anal Appl, 2015, 36: 793–819

    Article  MathSciNet  MATH  Google Scholar 

  7. Demmel J. Applied Numerical Linear Algebra. Philadelphia: SIAM, 1997

    Book  MATH  Google Scholar 

  8. Flaschka U, Lin W-W, Wu J-L. A KQZ algorithm for solving linear-response eigenvalue equations. Linear Algebra Appl, 1992, 165: 93–123

    Article  MathSciNet  MATH  Google Scholar 

  9. Giannozzi P. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys Condensed Matter, 2009, 21: 395502

    Article  Google Scholar 

  10. Golub G, Ye Q. An inverse free preconditioned Krylov subspace methods for symmetric eigenvalue problems. SIAM J Sci Comput, 2002, 24: 312–334

    Article  MathSciNet  MATH  Google Scholar 

  11. Golub G H, Van Loan C F. Matrix Computations, 3rd ed. Baltimore-Maryland: Johns Hopkins University Press, 1996

    MATH  Google Scholar 

  12. Hetmaniuk U, Lehoucq R. Basis selection in LOBPCG. J Comput Phys, 2006, 218: 324–332

    Article  MathSciNet  MATH  Google Scholar 

  13. Imakura A, Du L, Sakurai T. Error bounds of Rayleigh-Ritz type contour integral-based eigensolver for solving generalized eigenvalue problems. Numer Algor, 2016, 71: 103–120

    Article  MathSciNet  MATH  Google Scholar 

  14. Knyazev A V. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J Sci Comput, 2001, 23: 517–541

    Article  MathSciNet  MATH  Google Scholar 

  15. Kovač-Striko J, Veselić K. Trace minimization and definiteness of symmetric pencils. Linear Algebra Appl, 1995, 216: 139–158

    Article  MathSciNet  MATH  Google Scholar 

  16. Lancaster P, Ye Q. Variational properties and Rayleigh quotient algorithms for symmetric matrix pencils. Oper Theory Adv Appl, 1989, 40: 247–278

    MathSciNet  MATH  Google Scholar 

  17. Li R-C. Rayleigh quotient based optimization methods for eigenvalue problems. In: Bai Z, Gao W, Su Y F, eds. Matrix Functions and Matrix Equations, vol. 19. Series in Contemporary Applied Mathematics. Singapore: World Scientific, 2015, 76–108

    Chapter  Google Scholar 

  18. Li R-C, Zhang L-H. Convergence of block Lanczos method for eigenvalue clusters. Numer Math, 2015, 131: 83–113

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang X, Li R-C. Extensions of Wielandt’s min-max principles for positive semi-definite pencils. Linear Multilinear Algebra, 2014, 62: 1032–1048

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang X, Li R-C, Bai Z. Trace minimization principles for positive semi-definite pencils. Linear Algebra Appl, 2013, 438: 3085–3106

    Article  MathSciNet  MATH  Google Scholar 

  21. Marques M A, Castro A, Rubio A. Assessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theory. J Chem Phys, 2001, 115: 3006–3014

    Article  Google Scholar 

  22. Money J, Ye Q. EIGIFP: A MATLAB program for solving large symmetric generalized eigenvalue problems. ACM Trans Math Software, 2005, 31: 270–279

    Article  MathSciNet  MATH  Google Scholar 

  23. Olsen J, Jensen Aa H J, Jørgensen P. Solution of the large matrix equations which occur in response theory. J Comput Phys, 1988, 74: 265–282

    Article  MATH  Google Scholar 

  24. Olsen J, Jørgensen P. Linear and nonlinear response functions for an exact state and for an MCSCF state. J Chem Phys, 1985, 82: 3235–3264

    Article  Google Scholar 

  25. Quillen P, Ye Q. A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. J Comput Appl Math, 2010, 233: 1298–1313

    Article  MathSciNet  MATH  Google Scholar 

  26. Ring P, Schuck P. The Nuclear Many-Body Problem. New York: Springer-Verlag, 1980

    Book  Google Scholar 

  27. Rocca D. Time-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular Spectra. PhD thesis. Trieste: The International School for Advanced Studies, 2007

    Google Scholar 

  28. Rocca D. Iterative diagonalization of non-hermitian eigenproblems in time-dependent density functional and manybody perturbation theory. Boston: Presentation at Session B39, the APS Marching Meeting, 2012

    Google Scholar 

  29. Saad Y. On the rates of convergence of the Lanczos and the block-Lanczos methods. SIAM J Numer Anal, 1980, 15: 687–706

    Article  MathSciNet  MATH  Google Scholar 

  30. Teter M, Payne M, Allan D. Solution of Schr¨odinger equation for large systems. Phys Rev B, 1989, 40: 12255–12263

    Article  Google Scholar 

  31. Thouless D J. Vibrational states of nuclei in the random phase approximation. Nuclear Phys, 1961, 22: 78–95

    Article  MathSciNet  MATH  Google Scholar 

  32. Thouless D J. The Quantum Mechanics of Many-Body Systems. New York: Academic, 1972

    MATH  Google Scholar 

  33. Tsiper E V. Variational procedure and generalized Lanczos recursion for small-amplitude classical oscillations. JETP Letters, 1999, 70: 751–755

    Article  Google Scholar 

  34. Wen Z, Zhang Y. Block algorithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation. Technical report. ArXiv:1507.06078, 2015

    Google Scholar 

  35. Ye Q. An adaptive block Lanczos algorithm. Numer Algor, 1996, 12: 97–110

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou Y, Li R-C. Bounding the spectrum of large Hermitian matrices. Linear Algebra Appl, 2011, 435: 480–493

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoJun Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Li, R. & Lin, W. Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods. Sci. China Math. 59, 1443–1460 (2016). https://doi.org/10.1007/s11425-016-0297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0297-1

Keywords

MSC(2010)

Navigation