Skip to main content
Log in

Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime

Science China Mathematics Aims and scope Submit manuscript

Abstract

We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0 < ε ≤ 1 which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e., there are propagating waves with wavelength O(ε 2) and O(1) in time and space, respectively. We begin with the conservative Crank-Nicolson finite difference (CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size h and time step τ as well as the small parameter 0 < ε ≤ 1. Based on the error bound, in order to obtain ‘correct’ numerical solutions in the nonrelativistic limit regime, i.e., 0 < ε ≤ 1, the CNFD method requests the ε-scalability: τ = O(ε 3) and \(h = O\left( {\sqrt \varepsilon } \right)\). Then we propose and analyze two numerical methods for the discretization of NLDE by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time-splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε-scalability is improved to τ = O(ε 2) and h = O(1) when 0 < ε ≤ 1. Extensive numerical results are reported to confirm our error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abanin D A, Morozov S V, Ponomarenko L A, et al. Giant nonlocality near the Dirac point in graphene. Science, 2011, 332: 328–330

    Article  Google Scholar 

  2. Ablowitz M J, Zhu Y. Nonlinear waves in shallow honeycomb lattices. SIAM J Appl Math, 2012, 72: 240–260

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez A. Linearized Crank-Nicholcon scheme for nonlinear Dirac equations. J Comput Phys, 1992, 99: 348–350

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez A, Carreras B. Interaction dynamics for the solitary waves of a nonlinear Dirac model. Phys Lett A, 1981, 86: 327–332

    Article  MathSciNet  Google Scholar 

  5. Alvarez A, Kuo P Y, Vázquez L. The numerical study of a nonlinear one-dimensional Dirac equation. Appl Math Comput, 1983, 13: 1–15

    MathSciNet  MATH  Google Scholar 

  6. Balabane M, Cazenave T, Douady A, et al. Existence of excited states for a nonlinear Dirac field. Commun Math Phys, 1988, 119: 153–176

    Article  MathSciNet  MATH  Google Scholar 

  7. Balabane M, Cazenave T, Vazquez L. Existence of standing waves for Dirac fields with singular nonlinearities. Commun Math Phys, 1990, 133: 53–74

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao W, Cai Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet Relat Mod, 2013, 6: 1–135

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao W, Cai Y. Optimal error estmiates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math Comp, 2013, 82: 99–128

    Article  MathSciNet  MATH  Google Scholar 

  10. Bao W, Cai Y. Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator. SIAM J Numer Anal, 2014, 52: 1103–1127

    Article  MathSciNet  MATH  Google Scholar 

  11. Bao W, Cai Y, Jia X, et al. Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. ArXiv:1504.02881, 2015

    Google Scholar 

  12. Bao W, Cai Y, Jia X, et al. A uniformly accurate multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime. SIAM J Numer Anal, 2016, 54: 1785–2812

    Article  MathSciNet  MATH  Google Scholar 

  13. Bao W, Cai Y, Zhao X. A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J Numer Anal, 2014, 52: 2488–2511

    Article  MathSciNet  MATH  Google Scholar 

  14. Bao W, Dong X. Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer Math, 2012, 120: 189–229

    Article  MathSciNet  MATH  Google Scholar 

  15. Bao W, Jin S, Markowich P A. On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime. J Comput Phys, 2002, 175: 487–524

    Article  MathSciNet  MATH  Google Scholar 

  16. Bao W, Jin S, Markowich P A. Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J Sci Comput, 2003, 25: 27–64

    Article  MathSciNet  MATH  Google Scholar 

  17. Bao W, Li X. An efficient and stable numerical method for the Maxwell-Dirac system. J Comput Phys, 2004, 199: 663–687

    Article  MathSciNet  MATH  Google Scholar 

  18. Bartsch T, Ding Y. Solutions of nonlinear Dirac equations. J Differential Equations, 2006, 226: 210–249

    Article  MathSciNet  MATH  Google Scholar 

  19. Bechouche P, Mauser N, Poupaud F. (Semi)-nonrelativistic limits of the Dirac eqaution with external time-dependent electromagnetic field. Commun Math Phys, 1998, 197: 405–425

    Article  MathSciNet  MATH  Google Scholar 

  20. Bournaveas N, Zouraris G E. Split-step spectral scheme for nonlinear Dirac systems. ESAIM Math Model Numer Anal, 2012, 46: 841–874

    Article  MathSciNet  MATH  Google Scholar 

  21. Brinkman D, Heitzinger C, Markowich P A. A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene. J Comput Phys, 2014, 257: 318–332

    Article  MathSciNet  Google Scholar 

  22. Cazenave T, Vazquez L. Existence of localized solutions for a classical nonlinear Dirac field. Commun Math Phys, 1986, 105: 34–47

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang S J, Ellis S D, Lee B W. Chiral confinement: An exact solution of the massive Thirring model. Phys Rev D, 1975, 11: 3572–2582

    Article  Google Scholar 

  24. Chartier P, Florian M, Thalhammer M, et al. Improved error estimates for splitting methods applied to highlyoscillatory nonlinear Schrödinger equations. Math Comp, 2015, doi: 10.1090/mcom/3088

    Google Scholar 

  25. Cooper F, Khare A, Mihaila B, et al. Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity. Phys Rev E, 2010, 82: 036604

    Article  MathSciNet  Google Scholar 

  26. De Frutos J, Sanz-Serna J M. Split-step spectral scheme for nonlinear Dirac systems. J Comput Phys, 1989, 83: 407–423

    Article  MathSciNet  MATH  Google Scholar 

  27. Dirac P A M. The quantum theory of the electron. Proc R Soc Lond A, 1928, 117: 610–624

    Article  MATH  Google Scholar 

  28. Dirac P A M. Principles of Quantum Mechanics. London: Oxford University Press, 1958

    MATH  Google Scholar 

  29. Dolbeault J, Esteban M J, Séré E. On the eigenvalues of operators with gaps: Applications to Dirac operator. J Funct Anal, 2000, 174: 208–226

    Article  MathSciNet  MATH  Google Scholar 

  30. Esteban M J, Séré E. Stationary states of the nonlinear Dirac equation: a variational approach. Commun Math Phys, 1995, 171: 323–350

    Article  MathSciNet  MATH  Google Scholar 

  31. Esteban M J, Séré E. An overview on linear and nonlinear Dirac equations. Discrete Contin Dyn Syst, 2002, 8: 381–397

    Article  MathSciNet  MATH  Google Scholar 

  32. Fefferman C L, Weistein M I. Honeycomb lattice potentials and Dirac points. J Amer Math Soc, 2012, 25: 1169–1220

    Article  MathSciNet  MATH  Google Scholar 

  33. Fefferman C L, Weistein M I. Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun Math Phys, 2014, 326: 251–286

    Article  MathSciNet  MATH  Google Scholar 

  34. Fillion-Gourdeau F, Lorin E, Bandrauk A D. Resonantly enhanced pair production in a simple diatomic model. Phys Rev Lett, 2013, 110: 013002

    Article  Google Scholar 

  35. Fillion-Gourdeau F, Lorin E, Bandrauk A D. A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry. J Comput Phys, 2014, 272: 559–587

    Article  MathSciNet  MATH  Google Scholar 

  36. Finkelstein R, Lelevier R, Ruderman M. Nonlinear spinor fields. Phys Rev, 1951, 83: 326–332

    Article  MathSciNet  MATH  Google Scholar 

  37. Foldy L L, Wouthuysen S A. On the Dirac theory of spin 1/2 particles and its nonrelavistic limit. Phys Rev, 1950, 78: 29–36

    Article  MATH  Google Scholar 

  38. Fushchich W I, Shtelen W M. On some exact solutions of the nonlinear Dirac equation. J Phys A, 1983, 16: 271–277

    Article  MathSciNet  MATH  Google Scholar 

  39. Gautschi W. Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer Math, 1961, 3: 381–397

    Article  MathSciNet  MATH  Google Scholar 

  40. Grigore D R, Nenciu G, Purice R. On the nonrelativistic limits of the Dirac Hamiltonian. Ann Inst Henri Poincaré, 1989, 51: 231–263

    MathSciNet  MATH  Google Scholar 

  41. Haddad L H, Carr L D. The nonlinear Dirac equation in Bose-Einstein condensates: Foundation and symmetries. Phys D, 2009, 238: 1413–1421

    Article  MathSciNet  MATH  Google Scholar 

  42. Haddad L H, Weaver C M, Carr L D. The nonlinear Dirac equation in Bose-Einstein condensates, I: Relativistic solitons in armchair nanoribbon optical lattices. ArXiv:1305.6532, 2013

    Google Scholar 

  43. Hagen C R. New solutions of the Thirring model. Nuovo Cimento, 1967, 51: 169–186

    Article  Google Scholar 

  44. Hairer E, Lubich C, Wanner G. Geometric Numerical Integration. New York: Springer-Verlag, 2002

    Book  MATH  Google Scholar 

  45. Hammer R, Pötz W, Arnold A. A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)D. J Comput Phys, 2014, 256: 728–747

    Article  MathSciNet  Google Scholar 

  46. Heisenberg W. Quantum theory of fields and elementary particles. Rev Mod Phys, 1957, 29: 269–278

    Article  MathSciNet  MATH  Google Scholar 

  47. Hong J L, Li C. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J Comput Phys, 2006, 211: 448–472

    Article  MathSciNet  MATH  Google Scholar 

  48. Huang Z, Jin S, Markowich P A, et al. A time-splitting spectral scheme for the Maxwell-Dirac system. J Comput Phys, 2005, 208: 761–789

    Article  MathSciNet  MATH  Google Scholar 

  49. Hunziker W. On the nonrelativistic limit of the Dirac theory. Commun Math Phys, 1975, 40: 215–222

    Article  MathSciNet  Google Scholar 

  50. Ivanenko D D. Notes to the theory of interaction via particles. Zh éksp Teor Fiz, 1938, 8: 260–266

    MATH  Google Scholar 

  51. Jia X. Numerical methods and comparison for the Dirac equations in the nonrelativistic limit regime. PhD thesis. Singapore: National University of Singapore, 2016

    Google Scholar 

  52. Komech A, Komech A. Golbal attraction to solitary waves for a nonlinear Dirac equation with mean field interaction. SIAM J Math Anal, 2010, 42: 2944–2964

    Article  MathSciNet  MATH  Google Scholar 

  53. Korepin V E. Dirac calculation of the S matrix in the massive Thirring model. Theor Math Phys, 1979, 41: 953–967

    Article  MathSciNet  Google Scholar 

  54. Lee S Y, Kuo T K, Gavrielides A. Exact localized solutions of two-dimensional field theories of massive fermions with Fermi interactions. Phys Rev D, 1975, 12: 2249–2253

    Article  Google Scholar 

  55. Liang H, Meng J, Zhou S-G. Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys Rep, 2015, 570: 1–84

    Article  MathSciNet  Google Scholar 

  56. Lubich C. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math Comp, 2008, 77: 2141–2153

    Article  MathSciNet  MATH  Google Scholar 

  57. Masmoudi N, Mauser N J. The selfconsistent Pauli equaiton. Monatsh Math, 2001, 132: 19–24

    Article  MathSciNet  MATH  Google Scholar 

  58. Mathieu P. Soliton solutions for Dirac equations with homogeneous non-linearity in (1+1) dimensions. J Phys A, 1985, 18: L1061–L1066

    Article  MathSciNet  Google Scholar 

  59. Merkl M, Jacob A, Zimmer F E, et al. Chiral confinement in quasirelativistic Bose-Einstein condensates. Phys Rev Lett, 2010, 104: 073603

    Article  Google Scholar 

  60. Merle F. Existence of stationary states for nonlinear Dirac equations. J Differential Equations, 1988, 74: 50–68

    Article  MathSciNet  MATH  Google Scholar 

  61. Najman B. The nonrelativistic limit of the nonlinear Dirac equation. Ann Inst Henri Poincaré, 1992, 9: 3–12

    MathSciNet  MATH  Google Scholar 

  62. Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of the graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  Google Scholar 

  63. Nraun J W, Su Q, Grobe R. Numerical approach to solve the time-dependent Dirac equation. Phys Rev A, 1999, 59: 604–612

    Article  Google Scholar 

  64. Rafelski J. Soliton solutions of a selfinteracting Dirac field in three space dimensions. Phys Lett B, 1977, 66: 262–266

    Article  Google Scholar 

  65. Ring P. Relativistic mean field theory in finite nuclei. Prog Part Nucl Phys, 1996, 37: 193–263

    Article  Google Scholar 

  66. Saha B. Nonlinear spinor fields and its role in cosmology. Int J Theor Phys, 2012, 51: 1812–1837

    Article  MathSciNet  MATH  Google Scholar 

  67. Shao S H, Quintero N R, Mertens F G, et al. Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity. Phys Rev E, 2014, 90: 032915

    Article  Google Scholar 

  68. Shao S H, Tang H Z. Interaction for the solitary waves of a nonlinear Dirac model. Phys Lett A, 2005, 345: 119–128

    Article  MathSciNet  MATH  Google Scholar 

  69. Shao S H, Tang H Z. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete Cont Dyn Syst B, 2006, 6: 623–640

    Article  MathSciNet  MATH  Google Scholar 

  70. Shao S H, Tang H Z. Interaction of solitary waves with a phase shift in a nonlinear Dirac model. Commun Comput Phys, 2008, 3: 950–967

    MathSciNet  MATH  Google Scholar 

  71. Shen J, Tang T. Spectral and High-Order Methods with Applications. Beijing: Science Press, 2006

    MATH  Google Scholar 

  72. Soler M. Classical, stable, nonlinear spinor field with positive rest energy. Phys Rev D, 1970, 1: 2766–2769

    Article  Google Scholar 

  73. Strang G. On the construction and comparision of difference schemes. SIAM J Numer Anal, 1968, 5: 505–517

    Article  MathSciNet  Google Scholar 

  74. Stubbe J. Exact localized solutions of a family of two-dimensional nonliear spinor fields. J Math Phys, 1986, 27: 2561–2567

    Article  MathSciNet  MATH  Google Scholar 

  75. Takahashi K. Soliton solutions of nonlinear Dirac equations. J Math Phys, 1979, 20: 1232–1238

    Article  MATH  Google Scholar 

  76. Thirring W E. A soluble relativistic field theory. Ann Phys, 1958, 3: 91–112

    Article  MathSciNet  MATH  Google Scholar 

  77. Veselic K. Perturbation of pseudoresolvents and analyticity in 1/c of relativistic quantum mechanics. Commun Math Phys, 1971, 22: 27–43

    Article  MathSciNet  MATH  Google Scholar 

  78. Wang H, Tang H Z. An efficient adaptive mesh redistribution method for a nonlinear Dirac equation. J Comput Phys, 2007, 222: 176–193

    Article  MathSciNet  MATH  Google Scholar 

  79. Wang Z Q, Guo B Y. Modified Legendre rational spectral method for the whole line. J Comput Math, 2004, 22: 457–472

    MathSciNet  MATH  Google Scholar 

  80. Werle J. Non-linear spinor equations with localized solutions. Lett Math Phys, 1977, 2: 109–114

    Article  MathSciNet  Google Scholar 

  81. White G B. Splitting of the Dirac operator in the nonrelativistic limit. Ann Inst Henri Poincaré, 1990, 53: 109–121

    MathSciNet  MATH  Google Scholar 

  82. Xu J, Shao S H, Tang H Z. Numerical methods for nonlinear Dirac equation. J Comput Phys, 2013, 245: 131–149

    Article  MathSciNet  Google Scholar 

  83. Xu J, Shao S H, Tang H Z, Wei D Y. Multi-hump solitary waves of a nonlinear Dirac equation. Commun Math Sci, 2015, 13: 1219–1242

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiZhu Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, W., Cai, Y., Jia, X. et al. Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci. China Math. 59, 1461–1494 (2016). https://doi.org/10.1007/s11425-016-0272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0272-y

Keywords

MSC(2010)

Navigation