Skip to main content
Log in

Stochastic calculus with respect to G-Brownian motion viewed through rough paths

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study rough path properties of stochastic integrals of Itô’s type and Stratonovich’s type with respect to G-Brownian motion. The roughness of G-Brownian motion is estimated and then the pathwise Norris lemma in G-framework is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cass T, Hairer M, Litterer C, et al. Smoothness of the density for solutions to Gaussian rough differential equations. Ann Probab, 2015, 43: 188–239

    Article  MathSciNet  MATH  Google Scholar 

  2. Denis L, HuM S, Peng S G. Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion pathes. Potential Anal, 2011, 34: 139–161

    Article  MathSciNet  Google Scholar 

  3. Friz P, Hairer M. A Course on Rough Paths. New York: Springer, 2015

    MATH  Google Scholar 

  4. Friz P, Shekhar A. Doob-Meyer for rough paths. Bull Inst Math Acad Sin, 2012, 8: 73–84

    MathSciNet  MATH  Google Scholar 

  5. Gao F Q, Jiang H. Large deviations for stochastic differential equatioins driven by G-Brownian motion. Stochastic Process Appl, 2010, 120: 2212–2240

    Article  MathSciNet  MATH  Google Scholar 

  6. Geng X, Qian ZM, Yang DY. G-Brownian Motion as Rough Paths and Differential Equations Driven by G-Brownian Motion. New York: Springer, 2014

    Book  Google Scholar 

  7. Gubinelli M. Controlling rough paths. J Funct Anal, 2004, 216: 86–140

    Article  MathSciNet  MATH  Google Scholar 

  8. Gubinelli M. Ramification of rough paths. J Differential Equations, 2010, 248: 693–721

    Article  MathSciNet  MATH  Google Scholar 

  9. Hairer M, Pillai N. Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Ann Probab, 2013, 41: 2544–2598

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu M S, Ji S L, Peng S G, et al. Backward stochastic differential equations driven by G-Brownian motion. Stochastic Process Appl, 2014, 124: 759–784

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu M S, Ji S L, Peng S G, et al. Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion. Stochastic Process Appl, 2014, 124: 1170–1195

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu M S, Peng S G. On the representation theorem of G-expectation and paths of G-Brownian motion. Acta Math Appl Sin Engl Ser, 2009, 25: 539–546

    Article  MathSciNet  MATH  Google Scholar 

  13. Karoui N E, Peng S G, Quenez M C. Backward stochastic differential equation in finance. Math Finance 1995, 7: 1–71

    Google Scholar 

  14. Lyons T. Differential equations driven by rough signals. Rev Mat Iberoamericana, 1998, 14: 215–310

    Article  MathSciNet  MATH  Google Scholar 

  15. Lyons T, Qian Z M. System Control and Rough Paths. Oxford: Oxford University Press, 2002

    Book  MATH  Google Scholar 

  16. Ma J, Yong JM. Forward-Backward Stochastic Differential Equations and Their Applications-Introduction. In: Lecture Notes in Mathematics, vol. 1702. Berlin-Heidelberg: Springer, 1999

    Google Scholar 

  17. Norris J. Simplified Malliavin calculus. In: Séminaire de Probabilités. Lecture Notes in Mathematics, vol. 1204. Berlin: Springer, 1986, 101–130

    Google Scholar 

  18. Pardoux É, Peng S G. Adapted solution of a backward stochastic differential equation. Systems Control Lett, 1990, 14: 55–61

    Article  MathSciNet  MATH  Google Scholar 

  19. Pardoux É, Peng S G. Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab Theory Relat Fields, 1994, 98: 209–227

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng S G. A general stochastic maximum principle for optimal control problems. SIAM J Cont, 1990, 28: 966–979

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng S G. Backward SDE and related g-expectation. In: Pitman Research Notes in Mathematics Series, vol. 364. Harlow: Longman, 1997, 141–159

    Google Scholar 

  22. Peng S G. G-expectation, G-Brownian motion and related stochastic calculus of Itô type. Stoch Anal Appl, 2007, 2: 541–567

    MATH  Google Scholar 

  23. Peng S G. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process Appl, 2008, 118: 2223–2253

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng S G. Nonlinear expectations and stochastic calculus under uncertainty. ArXiv:1002.4546v1, 2010

    Google Scholar 

  25. Revuz D, Yor M. Continuous Martingales and Brownian Motion, 3rd ed. Berlin: Springer, 1999

    Book  MATH  Google Scholar 

  26. Song Y S. Uniqueness of the representation for G-martingales with finite variation. Electron J Probab, 2012, 17: 1–15

    Article  MathSciNet  Google Scholar 

  27. Zhang L X. Donsker’s invariance principle under the sub-linear expectation with an application to Chung’s law of the iterated logarithm. Commun Math Statist, 2015, 3: 187–214

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 10921101) and the Programme of Introducing Talents of Discipline to Universities of China (Grant No. B12023). The authors thank valuable suggestions of Dr. Falei Wang to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiGe Peng.

Additional information

Dedicated to Professor LI TaTsien on the Occasion of His 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Zhang, H. Stochastic calculus with respect to G-Brownian motion viewed through rough paths. Sci. China Math. 60, 1–20 (2017). https://doi.org/10.1007/s11425-016-0171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0171-4

Keywords

MSC(2010)

Navigation