Skip to main content
Log in

Vectorial Ekeland variational principle for systems of equilibrium problems and its applications

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For a family of vector-valued bifunctions, we introduce the notion of sequentially lower monotonity, which is strictly weaker than the lower semi-continuity of the second variables of the bifunctions. Then, we give a general version of vectorial Ekeland variational principle (briefly, denoted by EVP) for a system of equilibrium problems, where the sequentially lower monotone objective bifunction family is defined on products of sequentially lower complete spaces (concerning sequentially lower complete spaces, see Zhu et al. (2013)), and taking values in a quasi-ordered locally convex space. Besides, the perturbation consists of a subset of the ordering cone and a family {p i } iI of negative functions satisfying for each iI, p i (x i , y i ) = 0 if and only if x i = y i . From the general version, we can deduce several particular equilibrium versions of EVP, which can be applied to show the existence of solutions for countable systems of equilibrium problems. In particular, we obtain a general existence result of solutions for countable systems of equilibrium problems in the setting of sequentially lower complete spaces. By weakening the compactness of domains and the lower semi-continuity of objective bifunctions, we extend and improve some known existence results of solutions for countable system of equilibrium problems in the setting of complete metric spaces (or Fréchet spaces). When the domains are non-compact, by using the theory of angelic spaces (see Floret (1980)), we generalize some existence results on solutions for countable systems of equilibrium problems by extending the framework from reflexive Banach spaces to the strong duals of weakly compactly generated spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Homidan S, Ansari Q H, Yao J C. Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Anal, 2008, 69: 126–139

    Article  MathSciNet  MATH  Google Scholar 

  2. Alleche B, Rădulescu V D. The Ekeland variational principle for equilibrium problems revisited and applications. Nonlinear Anal, 2015, 23: 17–25

    Article  MathSciNet  MATH  Google Scholar 

  3. Amini-Harandi A, Ansari Q H, Farajzadeh A P. Existence of equilibria in complete metric spaces. Taiwanese J Math, 2012, 16: 777–785

    MathSciNet  MATH  Google Scholar 

  4. Ansari Q H, Schaible S, Yao J C. System of vector equilibrium problems and its applications. J Optim Theory Appl, 2000, 107: 547–557

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubin J P, Ekeland I. Applied Nonlinear Analysis. New York: Wiley, 1984

    MATH  Google Scholar 

  6. Bednarczuk E M, Zagrodny D. Vector variational principle. Arch Math, 2009, 93: 577–586

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianchi M, Kassay G, Pini R. Existence of equilibria via Ekeland’s principle. J Math Anal Appl, 2005, 305: 502–512

    Article  MathSciNet  MATH  Google Scholar 

  8. Bianchi M, Kassay G, Pini R. Ekeland’s principle for vector equilibrium problems. Nonlinear Anal, 2007, 66: 1459–1464

    Article  MathSciNet  MATH  Google Scholar 

  9. Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. Math Stud, 1994, 63: 123–145

    MathSciNet  MATH  Google Scholar 

  10. Chen G Y, Huang X X. A unified approach to the existing three types of variational principle for vector valued functions. Math Methods Oper Res, 1998, 48: 349–357

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen G Y, Huang X X, Yang X G. Vector Optimization: Set-Valued and Variational Analysis. Berlin: Springer-Verlag, 2005

    MATH  Google Scholar 

  12. Chen Y, Cho Y J, Yang L. Note on the results with lower semi-continuity. Bull Korean Math Soc, 2002, 39: 535–541

    Article  MathSciNet  MATH  Google Scholar 

  13. Combettes P L, Hirstoaga S A. Equilibrium programming in Hilbert spaces. J Nonlinear Convex Anal, 2005, 6: 117–136

    MathSciNet  MATH  Google Scholar 

  14. Dentcheva D, Helbig S. On variational principles, level sets, well-posedness, and solutions in vector optimization. J Optim Theory Appl, 1996, 89: 325–349

    Article  MathSciNet  MATH  Google Scholar 

  15. Du W S. On some nonlinear problems induced by an abstract maximal element principle. J Math Anal Appl, 2008, 347: 391–399

    Article  MathSciNet  MATH  Google Scholar 

  16. Ekeland I. Sur les problémes variationnels. C R Acad Sci Paris, 1972, 275: 1057–1059

    MathSciNet  MATH  Google Scholar 

  17. Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47: 324–353

    Article  MathSciNet  MATH  Google Scholar 

  18. Ekeland I. Nonconvex minimization problems. Bull Amer Math Soc, 1979, 1: 443–474

    Article  MathSciNet  MATH  Google Scholar 

  19. Finet C, Quarta L, Troestler C. Vector-valued variational principles. Nonlinear Anal, 2003, 52: 197–218

    Article  MathSciNet  MATH  Google Scholar 

  20. Flores-Bazán F, Gutiérrez C, Novo V. A Brézis-Browder principle on partially ordered spaces and related ordering theorems. J Math Anal Appl, 2011, 375: 245–260

    Article  MathSciNet  MATH  Google Scholar 

  21. Floret K. Weakly Compact Sets. Berlin: Springer-Verlag, 1980

    Book  MATH  Google Scholar 

  22. Göpfert A, Riahi H, Tammer C, et al. Variational Methods in Partially Ordered Spaces. New York: Springer-Verlag, 2003

    MATH  Google Scholar 

  23. Göpfert A, Tammer C, Zălinescu C. On the vectorial Ekeland’s variational principle and minimal point theorems in product spaces. Nonlinear Anal, 2000, 39: 909–922

    Article  MathSciNet  MATH  Google Scholar 

  24. Gutiérrez C, Jiménez B, Novo V. A set-valued Ekeland’s variational principle in vector optimization. SIAM J Control Optim, 2008, 47: 883–903

    Article  MathSciNet  MATH  Google Scholar 

  25. Ha T X D. Some variants of the Ekeland variational principle for a set-valued map. J Optim Theory Appl, 2005, 124: 187–206

    Article  MathSciNet  MATH  Google Scholar 

  26. Hamel A H. Equivalents to Ekeland’s variational principle in uniform spaces. Nonlinear Anal, 2005, 62: 913–924

    Article  MathSciNet  MATH  Google Scholar 

  27. He F, Qiu J H. Sequentially lower complete spaces and Ekeland’s variational principle. Acta Math Sin Engl Ser, 2015, 31: 1289–1302

    Article  MathSciNet  MATH  Google Scholar 

  28. Hicks T L. Fixed point theorems for d-complete topological spaces. Internat J Math Math Sci, 1992, 15: 435–440

    Article  MathSciNet  MATH  Google Scholar 

  29. Hicks T L, Rhoades B E. Fixed points for pairs of mappings in d-complete topological spaces. Internat J Math Math Sci, 1993, 16: 259–266

    Article  MathSciNet  MATH  Google Scholar 

  30. Horváth J. Topological Vector Spaces and Distributions. Reading: Addison-Wesley, 1966

    MATH  Google Scholar 

  31. Isac G. The Ekeland’s principle and the Pareto-efficiency. In: Multi-Objective Programming and Goal Programming: Theories and Applications. Lecture Notes in Econom and Math Systems, vol. 432, Berlin: Springer-Verlag, 1996, 148–163

    Chapter  Google Scholar 

  32. Kassay G. On equilibrium problems. In: Optimization and Optimal Control: Theory and Applications. Optimization and Its Applications, vol. 39. Berlin: Springer-Verlag, 2010, 55–83

    Chapter  Google Scholar 

  33. Kelley J L. General Topology. New York: Van Nostrand, 1955

    MATH  Google Scholar 

  34. Kelley J L, Namioka I, Donoghue J W F, et al. Linear Topological Spaces. Princeton: Van Nostrand, 1963

    Book  MATH  Google Scholar 

  35. Khanh P Q, Quy D N. On Ekeland’s variational principle for Pareto minima of set-valued mappings. J Optim Theory Appl, 2012, 153: 280–297

    Article  MathSciNet  MATH  Google Scholar 

  36. Köthe G. Topological Vector Spaces I. Berlin: Springer-Verlag, 1969

  37. Lin L J, Du W S. Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J Math Anal Appl, 2006, 323: 360–370

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu C G, Ng K F. Ekeland’s variational principle for set-valued functions. SIAM J Optim, 2011, 21: 41–56

    Article  MathSciNet  MATH  Google Scholar 

  39. Oettli W, Théra M. Equivalents of Ekeland’s principle. Bull Austral Math Soc, 1993, 48: 385–392

    Article  MathSciNet  MATH  Google Scholar 

  40. Pang J S. Asymmetric variational inequality problems over product sets: Applications and iterative methods. Math Program, 1985, 31: 206–219

    Article  MathSciNet  MATH  Google Scholar 

  41. Qiu J H. A generalized Ekeland vector variational principle and its applications in optimization. Nonlinear Anal, 2009, 71: 4705–4717

    Article  MathSciNet  MATH  Google Scholar 

  42. Qiu J H. Set-valued quasi-metrics and a general Ekeland’s variational principle in vector optimization. SIAM J Control Optim, 2013, 51: 1350–1371

    Article  MathSciNet  MATH  Google Scholar 

  43. Qiu J H. A pre-order principle and set-valued Ekeland variational principle. J Math Anal Appl, 2014, 419: 904–937

    Article  MathSciNet  MATH  Google Scholar 

  44. Qiu J H. An equilibrium version of vectorial Ekeland variational principle and its applications to equilibrium problems. Nonlinear Anal, 2016, 27: 26–42

    Article  MathSciNet  MATH  Google Scholar 

  45. Wilansky A. Modern Methods in Topological Vector Spaces. New York: McGraw-Hill, 1978

    MATH  Google Scholar 

  46. Zhu J, Wei L, Zhu C C. Caristi type coincidence point theorem in topological spaces. J Appl Math, 2013, 2013: 902692

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11471236). The author thanks the anonymous referees for their valuable comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingHui Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J. Vectorial Ekeland variational principle for systems of equilibrium problems and its applications. Sci. China Math. 60, 1259–1280 (2017). https://doi.org/10.1007/s11425-015-9005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-9005-4

Keywords

MSC(2010)

Navigation