Skip to main content
Log in

Sharp constants for a class of multilinear integral operators and some applications

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We investigate a class of multilinear integral operators with the nonnegative kernels, and prove that the norms of the operators can be obtained by integral of the product of the kernel function and finitely many basic functions. Using the integral, we can easily calculate the sharp constants for the multilinear Hilbert inequality, the generalized Hardy-Littlewood-Sobolev inequality and the multilinear Hardy operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckner W. Geometric inequalities in Fourier analysis. In: Essays on Fourier Analysis in Honor of Elias M. Stein. Princeton Mathematical Series, vol. 42. Princeton: Princeton University Press, 1995, 36–68

    Google Scholar 

  2. Beckner W. Pitt’s inequality with sharp convolution estimates. Proc Amer Math Soc, 2008, 136: 1871–1885

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckner W. Weighted inequalities and Stein-Weiss potentials. Forum Math, 2008, 20: 587–606

    Article  MathSciNet  MATH  Google Scholar 

  4. Benyi A, Oh T. Best constants for certain multilinear integral operators. J Inequal Appl, 2006, 2006: 1–12

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen S Q, Wu H X. Multiple weighted estimates for commutators of multilinear fractional integral operators. Sci China Math, 2013, 56: 1879–1894

    Article  MathSciNet  MATH  Google Scholar 

  6. Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123: 1687–1693

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng L R, Ma B L, Liu S Y. A Marcinkiewicz criterion for L p-multipliers related to Schrödinger operators with constant magnetic fields. Sci China Math, 2015, 58: 389–404

    Article  MathSciNet  MATH  Google Scholar 

  8. Grafakos L. Classical Fourier Analysis, 2nd ed. New York: Springer, 2008

    MATH  Google Scholar 

  9. Grafakos L, Morpurgo C. A Selberg integral formula and applications. Pacific J Math, 1999, 191: 85–94

    Article  MathSciNet  MATH  Google Scholar 

  10. Grafakos L, Torres R H. A multilinear Schur test and multiplier operators. J Funct Anal, 2001, 187: 1–24

    Article  MathSciNet  MATH  Google Scholar 

  11. Hardy G H, Littlewood J E, Pólya G. Inequalities, 2nd ed. Cambridge: Cambridge University Press, 1952

    MATH  Google Scholar 

  12. Hardy G H, Littlewood J E. Some properties of fractional integrals I. Math Zeit, 1927, 27: 565–606

    Article  MathSciNet  MATH  Google Scholar 

  13. Lieb E H. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann of Math, 1983, 118: 349–374

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin H B, Yang D C. Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces. Sci China Math, 2014, 57: 123–144

    Article  MathSciNet  MATH  Google Scholar 

  15. Lu S Z, Ding Y, Yan D Y. Singular Integral and Related Topics. Singapore: World Scientific Publishing, 2007

    Book  MATH  Google Scholar 

  16. Lu S Z, Yan D Y, Zhao F Y. Sharp bounds for Hardy type operators on higher-dimensional product spaces. J Inequal Appl, 2013, 148: 1–11

    MathSciNet  MATH  Google Scholar 

  17. Rudin W. Fourier Analsis on Groups. New York: Interscience Publishers, 1962

    Google Scholar 

  18. Shi Z, Wu D, Yan D Y. Necessary and sufficient conditions of doubly weighted Hardy-Littlewood-Sobolev inequality. J Anal Theory Appl, 2014, 30: 193–204

    MathSciNet  MATH  Google Scholar 

  19. Sobolev S L. On a theorem in funtional analysis (in Russian). Mat Sbornik, 1938, 46: 471–497

    Google Scholar 

  20. Stein E M, Weiss G. Fractional integrals in n-dimensional Euclidean spaces. J Math Mech, 1958, 7: 503–514

    MathSciNet  MATH  Google Scholar 

  21. Wang S M, Lu S Z, Yan D Y. Explicit constants for Hardy’s inequality with power weight on n-dimensional product spaces. Sci China Math, 2012, 55: 2469–2480

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu X, Chen J C. Best constants for Hausdorff operators on n-dimensional product spaces. Sci China Math, 2014, 57: 569–578

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu D, Shi Z S, Yan D Y. Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality. Sci China Math, 2014, 57: 963–970

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DunYan Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Yan, D. Sharp constants for a class of multilinear integral operators and some applications. Sci. China Math. 59, 907–920 (2016). https://doi.org/10.1007/s11425-015-5120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5120-3

Keywords

MSC(2010)

Navigation