Skip to main content
Log in

Stable recovery of low-rank matrix via nonconvex Schatten p-minimization

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a sufficient condition is obtained to ensure the stable recovery (ɛ ≠ 0) or exact recovery (ɛ = 0) of all r-rank matrices X ∈ ℝm×n from \(b = \mathcal{A}(X) + z\) via nonconvex Schatten p-minimization for any \(\delta _{4r} \in \left[ {\frac{{\sqrt 3 }} {2},1} \right)\). Moreover, we determine the range of parameter p with any given δ\(\delta _{4r} \in \left[ {\frac{{\sqrt 3 }} {2},1} \right)\). In fact, for any given \(\delta _{4r} \in \left[ {\frac{{\sqrt 3 }} {2},1} \right)\), p ∈ (0, 2(1 − δ4r)] suffices for the stable recovery or exact recovery of all r-rank matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amit Y, Fink M, Srebro N, et al. Uncovering shared structures in multiclass classification. In: Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007, 17–24

    Google Scholar 

  2. Basri R, Jacobs D W. Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell, 2003; 25: 218–233

    Article  Google Scholar 

  3. Cai T T, Wang L, Xu G W. Shifting inequality and recovery of sparse signals. IEEE Trans Signal Process, 2010; 58: 1300–1308

    Article  MathSciNet  Google Scholar 

  4. Cai T T, Wang L, Xu G W. New bounds for restricted isometry constants. IEEE Trans Inform Theory, 2010; 56: 4388–4394

    Article  MathSciNet  Google Scholar 

  5. Cai T T, Zhang A. Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl Comput Harmon Anal, 2013; 35: 74–93

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai T T, Zhang A. Compressed sensing and affine rank minimization under restricted isometry. IEEE Trans Signal Process, 2013; 61: 3279–3290

    Article  MathSciNet  Google Scholar 

  7. Cai T T, Zhang A. Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans Inform Theory, 2014; 60: 122–132

    Article  MathSciNet  Google Scholar 

  8. Cai Y, Li S. Convergence analysis of projected gradient descent for Schatten-p nonconvex matrix recovery. Sci China Math, 2015; 58: 845–858

    Article  MathSciNet  Google Scholar 

  9. Candès E J. The restricted isometry property and its implications for compressed sensing. C R Marh Acad Sci Paris, 2008; 346: 589–592

    Article  MATH  Google Scholar 

  10. Candès E J, Plan Y. Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements. IEEE Trans Inform Theory, 2011; 57: 2342–2359

    Article  MathSciNet  Google Scholar 

  11. Candès E J, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005; 51: 4203–4215

    Article  MATH  MathSciNet  Google Scholar 

  12. Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett, 2007; 14: 707–710

    Article  Google Scholar 

  13. Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 2008; 24: 1–14

    Article  MathSciNet  Google Scholar 

  14. Chen W G, Wu G Q. Harmonic analysis and research on the channel coding and decoding (in Chinese). Sci Sin Math, 2014; 44: 447–456

    Article  Google Scholar 

  15. Dan W. Analysis of orthogonal multi-matching pursuit under restricted isometry property. Sci China Math, 2014; 57: 2179–2188

    Article  MATH  MathSciNet  Google Scholar 

  16. Dan W, Wang R H. Robustness of orthogonal matching pursuit under restricted isometry property. Sci China Math, 2014; 57: 627–634

    Article  MATH  MathSciNet  Google Scholar 

  17. Dilworth S J. The dimension of Euclidean subspaces of quasi-normed spaces. Math Proc Cambridge Philos Soc, 1985; 97: 311–320

    Article  MATH  MathSciNet  Google Scholar 

  18. Foucart S. A note on guaranteed sparse recovery via l1-minimization. Appl Comput Harmon Anal, 2010; 29: 97–103

    Article  MATH  MathSciNet  Google Scholar 

  19. Foucart S. Sparse recovery algorithms: Sufficient conditions in terms of restricted isometry constants. Approximation Theory XIII: San Antonio 2010. New York: Springer, 2012: 65–77

    Chapter  Google Scholar 

  20. Foucart S, Lai M J. Sparsest solutions of underdetermined linear systems via l q-minimization for 0 < q ≤ 1. Appl Comput Harmon Anal, 2009; 26: 395–407

    Article  MATH  MathSciNet  Google Scholar 

  21. Kong L C, Xiu N H. Exact low-rank matrix recovery via nonconvex Schatten p-minimization. Asia-Pac J Oper Res, 2013; 30: 1–13

    Article  MATH  Google Scholar 

  22. Lin J, Li S. Convergence of projected Landweber iteration for matrix rank minimization. Appl Comput Harmon Anal, 2014; 36: 316–325

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu L, Huang W, Chen D R. Exact minimum rank approximation via Schatten p-norm minimization. J Comput Appl Math, 2014; 267: 218–227

    Article  MATH  MathSciNet  Google Scholar 

  24. Mo Q, Li S. New bounds on the restricted isometry constant d2k. Appl Comput Harmon Anal, 2011; 31: 460–468

    Article  MATH  MathSciNet  Google Scholar 

  25. Mohan K, Fazel M. New restricted isometry results for noisy low-rank recovery. In: IEEE International Symposium on Information Theory Proceedings. Seattle: IEEE, 2010, 1573–1577

    Google Scholar 

  26. Recht B, Fazel M, Parrilo P A. Guaranteed minimum rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev, 2010; 52: 471–501

    Article  MATH  MathSciNet  Google Scholar 

  27. Shen Y, Li S. Restricted p-isometry property and its application for nonconvex compressive sensing. Adv Comput Math, 2012; 37: 441–452

    Article  MATH  MathSciNet  Google Scholar 

  28. Sun Q Y. Recovery of sparsest signals via lq-minimization. Appl Comput Harmon Anal, 2012; 32: 329–341

    Article  MATH  MathSciNet  Google Scholar 

  29. Tomasi C, Kanade T. Shape and motion from image streams under orthography: A factorization method. Int J Comput Vis, 1992; 9: 137–154

    Article  Google Scholar 

  30. Wang H M, Li S. The bounds of restricted isometry constants for low rank matrices recovery. Sci China Math, 2013; 56: 1117–1127

    Article  MATH  MathSciNet  Google Scholar 

  31. Wen J M, Li D F, Zhu F M. Stable recovery of sparse signals via lp-minimization. Appl Comput Harmon Anal, 2015; 38: 161–176

    Article  MATH  MathSciNet  Google Scholar 

  32. Wu R, Chen D R. The improved bounds of restricted isometry constant for recovery via lp-minimization. IEEE Trans Inform Theory, 2013; 59: 6142–6147

    Article  MathSciNet  Google Scholar 

  33. Xu Z Q. Compressed sensing: A survey (in Chinese). Sci Sin Math, 2012; 42: 865–877

    Article  Google Scholar 

  34. Zhang M, Huang Z H, Zhang Y. Restricted p-isometry properties of nonconvex matrix recovery. IEEE Trans Inform Theory, 2013; 59: 4316–4323

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenGu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, Y. Stable recovery of low-rank matrix via nonconvex Schatten p-minimization. Sci. China Math. 58, 2643–2654 (2015). https://doi.org/10.1007/s11425-015-5081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5081-6

Keywords

MSC(2010)

Navigation