Skip to main content
Log in

Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study a class of semilinear Schrödinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter λ and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter λ is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter λ becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the Schrödinger equation which involves critical growth but does not involve electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A, Badiale A, Cingolani S. Semiclassical states of nonlinear Schrödinger equations. Arch Ration Mech Anal, 1997, 140: 285–300

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A, Malchiodi A, Secchi S. Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch Ration Mech Anal, 2001, 159: 253–271

    Article  MathSciNet  MATH  Google Scholar 

  3. Arioli G, Szulkin A. A semilinear Schrödinger equation in the presence of a magnetic field. Z Angew Math Phy, 2000, 51: 366–384

    Article  MATH  Google Scholar 

  4. Barile S. Multiple semiclassical states for singular magnetic nonlinear Schrödinger equations. Electron J Diff Equ, 2008, 37: 1–18

    MathSciNet  MATH  Google Scholar 

  5. Barile S. A multiplicity result for singular NLS equations with magnetic potentials. Nonlinear Anal, 2008, 68: 3525–3540

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch T, Dancer N, Peng S. On multi-bump semi-classical bound states of nonlinear Schrödinger equations with electromagnetic fields. Adv Diff Equ, 2006, 11: 781–812

    MathSciNet  MATH  Google Scholar 

  7. Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51: 266–284

    MathSciNet  MATH  Google Scholar 

  8. Benci V, Cerami G. Existence of positive solutions of the equation \( - \Delta u + a(x)u = u^{\tfrac{{N + 2}} {{N - 2}}} \) in ℝN. J Funct Anal, 1990, 88: 90–117

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis H, Lieb E. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals. Proc Amer Math Soc, 1983, 88: 486–490

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477

    Article  MathSciNet  MATH  Google Scholar 

  11. Byeon J, Wang Z Q. Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc Var, 2003, 18: 207–219

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao D, Tang Z. Existance and uniqueness of multi-bump bounded states of nonlinear Schrödinger equations with electromagnetic fields. J Diff Equ, 2006, 222: 381–424

    Article  MathSciNet  MATH  Google Scholar 

  13. Cingolani S, Lazzo M. Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J Diff Equ, 2000, 160: 118–138

    Article  MathSciNet  MATH  Google Scholar 

  14. Cingolani S, Secchi S. Semiclassical limit for nonlinear Schrödinger eaution with electromagnetic fields. J Math Anal Appl, 2002, 275: 108–130

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding Y H, Tanaka K. Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscripta Math, 2003, 112: 109–135

    Article  MathSciNet  MATH  Google Scholar 

  16. Esteban M, Lions P L. Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. Calc Var, 1989, 140: 369–408

    MathSciNet  MATH  Google Scholar 

  17. Gui C. Existance of muti-bump solutions for nonlinear Schrödinger equations via variational method. Comm Partial Diff Equ, 1996, 21: 787–820

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurata K. Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal, 2000, 41: 763–778

    Article  MathSciNet  MATH  Google Scholar 

  19. Li G, Peng S, Wang C. Infinitely many solutions for nonlinear Schrödinger equation with electromagnetic fields. J Diff Equ, 2011, 251: 3500–3521

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang S, Zhang J. Solutions of perturbed Schrödinger equation with electromagnetic fields and critical nonlinearity. Proc Edinb Math Soc, 2011, 54: 131–147

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang Z. On the least energy solutions of nonlinear Schrödinger equations with electromagnetic fields. Comm Math Appl, 2007, 54: 627–637

    Article  MATH  Google Scholar 

  22. Tang Z. Multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields and critical frequency. J Diff Equ, 2008, 245: 2723–2748

    Article  MATH  Google Scholar 

  23. Tang Z. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Comm Pure Appl Anal, 2014, 13: 237–248

    Article  MATH  Google Scholar 

  24. Willem M. Minimax Theorems. Boston, MA: Birkhauser, 1996

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongWei Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Wang, Y. Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth. Sci. China Math. 58, 2317–2328 (2015). https://doi.org/10.1007/s11425-015-4987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-4987-3

Keywords

MSC(2010)

Navigation