Skip to main content
Log in

Two-parameter families of uniquely extendable Diophantine triples

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let A and K be positive integers and є ∈ {−2;−1, 1, 2}. The main contribution of the paper is a proof that each of the D(є2)-triples {K,A2K + 2єA, (A + 1)2K + 2є(A + 1)} has unique extension to a D(є2)- quadruple. This is used to slightly strengthen the conditions required for the existence of a D(1)-quintuple whose smallest three elements form a regular triple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkin J, Hoggatt V E, Strauss E G. On Euler’s solution of a problem of Diophantus. Fibonacci Quart, 1979, 17: 333–339

    MathSciNet  MATH  Google Scholar 

  2. Baker A, Davenport H. The equations 3x 2−2 = y 2 and 8x 2−7 = z 2. Quart J Math Oxford Ser (2), 1969, 20: 129–137

    Article  MathSciNet  Google Scholar 

  3. Bennett M A. On the number of solutions of simultaneous Pell equations. J Reine Angew Math, 1998, 498: 173–199

    MathSciNet  MATH  Google Scholar 

  4. Cipu M. Further remarks on Diophantine quintuples. Acta Arith, 2015, 168: 201–219

    Article  MathSciNet  MATH  Google Scholar 

  5. Cipu M, Filipin A, Fujita Y. Bounds for Diophantine quintuples II. Publ Math Debrecen, 2016, 88: 59–78

    Article  MathSciNet  MATH  Google Scholar 

  6. Cipu M, Fujita Y. Bounds for Diophantine quintuples. Glas Mat Ser III, 2015, 50: 25–34

    Article  MathSciNet  MATH  Google Scholar 

  7. Dujella A. There are only nitely many Diophantine quintuples. J Reine Angew Math, 2004, 566: 183–224

    MathSciNet  MATH  Google Scholar 

  8. Dujella A, Petho A. A generalization of a theorem of Baker and Davenport. Quart J Math Oxford Ser (2), 1998, 49: 291–306

    Article  MathSciNet  MATH  Google Scholar 

  9. Dujella A, Ramasamy A M S. Fibonacci numbers and sets with the property D(4). Bull Belg Math Soc Simon Stevin, 2005, 12: 401–412

    MathSciNet  MATH  Google Scholar 

  10. Elsholtz C, Filipin A, Fujita Y. On Diophantine quintuples and D(-1)-quadruples. Monatsh Math, 2014, 175: 227–239

    Article  MathSciNet  MATH  Google Scholar 

  11. Filipin A. There does not exist a D(4)-sextuple. J Number Theory, 2008, 128: 1555–1565

    Article  MathSciNet  MATH  Google Scholar 

  12. Filipin A. An irregular D(4)-quadruple cannot be extended to a quintuple. Acta Arith, 2009, 136: 167–176

    Article  MathSciNet  MATH  Google Scholar 

  13. Filipin A. On the size of sets in which xy + 4 is always a square. Rocky Mountain J Math, 2009, 39: 1195–1224

    Article  MathSciNet  MATH  Google Scholar 

  14. Filipin A. There are only finitely many D(4)-quintuples. Rocky Mountain J Math, 2011, 41: 1847–1860

    Article  MathSciNet  MATH  Google Scholar 

  15. Filipin A, He B, Togbé A. On a family of two-parametric D(4)-triples. Glas Mat Ser III, 2012, 47: 31–51

    Article  MathSciNet  MATH  Google Scholar 

  16. Fujita Y. The unique representation d = 4k(k 2-1) in D(4)-quadruples–k-2; k +2; 4k; d. Math Commun, 2006, 11: 69–81

    MathSciNet  MATH  Google Scholar 

  17. Fujita Y. Any Diophantine quintuple contains a regular Diophantine quadruple. J Number Theory, 2009, 129: 1678–1697

    Article  MathSciNet  MATH  Google Scholar 

  18. He B, Togbé A. On a family of Diophantine triples–k;A 2 k + 2A; (A + 1)2k + 2(A + 1) with two parameters. Acta Math Hungar, 2009, 124: 99–113

    Article  MathSciNet  MATH  Google Scholar 

  19. He B, Togbé A. On a family of Diophantine triples–k;A 2 k+2A; (A+1)2k+2(A+1) with two parameters II. Period Math Hungar, 2012, 64: 1–10

    Article  MathSciNet  MATH  Google Scholar 

  20. Laurent M. Linear forms in two logarithms and interpolation determinants II. Acta Arith, 2008, 133: 325–348

    Article  MathSciNet  MATH  Google Scholar 

  21. Matveev E M. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv Ross Akad Nauk Ser Mat, 2000, 64: 125–180; English translation in Izv Math, 2000, 64: 1217–1269

    MathSciNet  MATH  Google Scholar 

  22. Rickert J H. Simultaneous rational approximation and related Diophantine equations. Math Proc Cambridge Philos Soc, 1993, 113: 461–472

    Article  MathSciNet  MATH  Google Scholar 

  23. The PARI Group. PARI/GP, version 2.6.0. Bordeaux, 2013, http://pari.math.u-bordeaux.fr/

  24. Trudgian T S. Bounds on the number of Diophantine quintuples. J Number Theory, 2015, 157: 233–249

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (JSPS KAKENHI) (Grant No. 16K05079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutsugu Fujita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipu, M., Fujita, Y. & Mignotte, M. Two-parameter families of uniquely extendable Diophantine triples. Sci. China Math. 61, 421–438 (2018). https://doi.org/10.1007/s11425-015-0638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-0638-0

Keywords

MSC(2010)

Navigation