Skip to main content
Log in

Adaptive quantile regression with precise risk bounds

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

An adaptive local smoothing method for nonparametric conditional quantile regression models is considered in this paper. Theoretical properties of the procedure are examined. The proposed method is fully adaptive in the sense that no prior information about the structure of the model is assumed. The fully adaptive feature not only allows varying bandwidths to accommodate jumps or instantaneous slope changes, but also allows the algorithm to be spatially adaptive. Under general conditions, precise risk bounds for homogeneous and heterogeneous cases of the underlying conditional quantile curves are established. An automatic selection algorithm for locally adaptive bandwidths is also given, which is applicable to higher dimensional cases. Simulation studies and data analysis confirm that the proposed methodology works well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailar B. Salary survey of U.S. colleges and universities offering degrees in statistics. Amstat News, 1991, 182: 3–10

    Google Scholar 

  2. Banerjee S, Rosenfeld A. MAP estimation of piecewise constant digital signals. Comput Vis Image Underst, 1993, 57: 63–80

    Article  Google Scholar 

  3. Bhattacharya P K. On an analog of regression analysis. Ann Math Statist, 1963, 34: 1459–1473

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhattacharya P K, Gangopadhyay A K. Kernel and nearest-neighbor estimation of a conditional quantile. Ann Statist, 1990, 18: 1400–1415

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchinsky M. Changes in the U.S. wage structure 1963–1987: Application of quantile regression. Econometrica, 1994, 62: 405–458

    Article  MATH  Google Scholar 

  6. Chaudhuri P. Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann Statist, 1991, 2: 760–777

    Article  MathSciNet  MATH  Google Scholar 

  7. Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81: 425–455

    Article  MathSciNet  MATH  Google Scholar 

  8. Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage. J Amer Statist Assoc, 1995, 90: 1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan J, Hu T C, Troung Y K. Robust nonparametric function estimation. Scand J Statist, 1994, 21: 433–446

    MathSciNet  MATH  Google Scholar 

  10. Goldenshluger A, Nemirovski A. On spatial adaptive estimation of nonparametric regression. Math Methods Statist, 1997, 6: 135–170

    MathSciNet  MATH  Google Scholar 

  11. Hall P. The Bootstrap and Edgeworth Expansion. New York: Springer-Verlag, 1992

    Book  MATH  Google Scholar 

  12. Hall P, Jones M C. Adaptive M-estimation in nonparametric regression. Ann Statist, 1990, 18: 1712–1728

    Article  MathSciNet  MATH  Google Scholar 

  13. Ichimura H. Semiparametric least squares (SLS) and weighted SLS estimation of single index models. J Econometrics, 1993, 58: 71–120

    Article  MathSciNet  MATH  Google Scholar 

  14. Katkovnik V, Egiazarian K, Astola J. Application of the ICI principle to window size adaptive median filtering. Signal Process, 2003, 83: 251–257

    Article  MATH  Google Scholar 

  15. Koenker R, Bassett G. Regression quantiles. Econometrica, 1978, 46: 33–50

    Article  MathSciNet  MATH  Google Scholar 

  16. Koenker R, Ng P, Portnoy S. Quantile smoothing splines. Biometrika, 1994, 81: 673–680

    Article  MathSciNet  MATH  Google Scholar 

  17. Marcinkiewicz J, Zygmund A. Sur les foncions independantes. Fund Math, 1937, 28: 60–90

    MATH  Google Scholar 

  18. Müller H G. Change points in nonparametric regression analysis. Ann Statist, 1992, 20: 737–761

    Article  MathSciNet  MATH  Google Scholar 

  19. Polzehl J, Spokoiny V. Adaptive weights smoothing with applications to image restoration. J Roy Statist Soc Ser B, 2000, 62: 335–354

    Article  MathSciNet  Google Scholar 

  20. Polzehl J, Spokoiny V. Varying coefficient regreßsion modelling by adaptive weights smoothing. Weierstraß-Institut für Angewandte Analysis und Stochastik, https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/70, 2003

    MATH  Google Scholar 

  21. Ruppert D, Carroll R J. Trimmed least-squares estimation in the linear model. J Amer Statist Assoc, 1980, 75: 828–838

    Article  MathSciNet  MATH  Google Scholar 

  22. Shao J. Mathematical Statistics. New York: Springer-Verlag, 2003

    Book  MATH  Google Scholar 

  23. Speckman P L. Fitting curves with features: Semiparametric change point methods. In: Sall J, Lehman A, eds. Computing Science and Statistics. Fairfax Station: Interface Foundation of North America, 1994, 257–264

    Google Scholar 

  24. Stone C J. Consistent nonparametric regression. Ann Statist, 1977, 5: 595–620

    Article  MathSciNet  MATH  Google Scholar 

  25. Su Y N, Tian M Z. Adaptive local linear quantile regression. Acta Math Appl Sin, 2011, 27: 509–516

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian M Z, Chan N H. Saddle point approximation and volatility estimation of Value-at-Risk. Statist Sinica, 2010, 20: 1239–1256

    MathSciNet  MATH  Google Scholar 

  27. Tian M Z, Chen G M. Hierarchical linear regression models for conditional quantiles. Sci China Ser A, 2006, 49: 11–16

    Article  MathSciNet  MATH  Google Scholar 

  28. Truong Y K. Asymptotic properties of kernel estimators based on local medians. Ann Statist, 1989, 17: 606–617

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsybakov A B. Robust reconstruction of functions by the local-approximation methods. Probl Inf Transm, 1986, 22: 133–146

    MathSciNet  MATH  Google Scholar 

  30. Wu J S, Chu C K. Kernel-type estimators of jump points and values of a regression function. Ann Statist, 1993, 21: 1545–1566

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu K, Jones M C. A comparison of local constant and local linear regression quantile estimators. Comput Statist Data Anal, 1997, 25: 159–166

    Article  MATH  Google Scholar 

  32. Yu K, Jones M C. Local linear quantile regression. J Amer Statist Assoc, 1998, 93: 228–237

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the major research projects of Philosophy and Social Science of the Chinese Ministry of Education (Grant No. 15JZD015), National Natural Science Foundation of China (Grant No. 11271368), the major program of Beijing Philosophy and Social Science Foundation of China (Grant No. 15ZDA17), project of Ministry of Education supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130004110007), the Key Program of National Philosophy and Social Science Foundation Grant (Grant No. 13AZD064), the major project of Humanities Social Science Foundation of Ministry of Education (Grant No. 15JJD910001), Renmin University of China, the Special Developing and Guiding Fund for Building World-Class Universities (Disciplines) (Grant No. 15XNL008), China Statistical Research Project (Grant No. 2016LD03), the Fund of the Key Research Center of Humanities and Social Sciences in the general Colleges and Universities of Xinjiang Uygur Autonomous Region, General Research Fund of Hong Kong Special Administrative Region Research Grants Council General Research Fund (Grant Nos. 14300514 and 14325612), Hong Kong Special Administrative Region-Research Grants Council Collaborative Research Fund (Grant No. CityU8/CRG/12G), the Theme-Based Research Scheme of Hong Kong Special Administrative Region-Research Grants Council Theme Based Scheme (Grant No. T32-101/15-R). Part of this research was conducted while the second author was visitng Renmin University of China (RUC) through the Chang Jiang Visiting Professorship award. Research supported by the School of Statistics at RUC is gratefully acknowledged. The authors thank two anonymous referees for their constructive feedback and suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MaoZai Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Chan, N.H. Adaptive quantile regression with precise risk bounds. Sci. China Math. 60, 875–896 (2017). https://doi.org/10.1007/s11425-015-0199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-0199-7

Keywords

MSC(2010)

Navigation