Skip to main content
Log in

A weighted Wilcoxon estimate for the covariate-specific ROC curve

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The covariate-specific receiver operating characteristic (ROC) curve is an important tool for evaluating the classification accuracy of a diagnostic test when it is associated with certain covariates. In this paper, a weighted Wilcoxon estimator is constructed for estimating this curve under the framework of location-scale model for the test result. The asymptotic normality is established, both for the regression parameter estimator and the estimator for the covariate-specific ROC curve at a fixed false positive point. Simulation results show that the Wilcoxon estimator compares favorably to its main competitors in terms of the standard error, especially when outliers exist in the covariates. As an illustration, the new procedure is applied to the dementia data from the national Alzheimer’s coordinating center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan X G, Zhou X H. Composite quantile regression for the receiver operating characteristic curve. Biometrika, 2013, 100: 889–900

    Article  MathSciNet  MATH  Google Scholar 

  2. Faraggi D. Adjusting receiver operating characteristic curves and related indices for covariates. J Roy Statist Soc Ser D, 2003, 52: 179–192

    Article  MathSciNet  Google Scholar 

  3. González-Manteiga W, Pardo-Fernández J C, Van Keilegom I. ROC curves in nonparametric location-scale regression models. Scand J Statist, 2011, 38: 169–184

    Article  MATH  Google Scholar 

  4. Heagerty P J, Pepe M S. Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. Appl Statist, 1999, 48: 533–551

    MATH  Google Scholar 

  5. Hettmansperger T P, Mckean J W. Robust Nonparametric Statistical Methods. New York: Wiley, 1998

    MATH  Google Scholar 

  6. Knight K. Limiting distributions for l 1 regression estimators under general conditions. Ann Statist, 1998, 26: 755–770

    Article  MathSciNet  MATH  Google Scholar 

  7. Leng C. Varible selection and coefficient estimation via regularized rank regression. Statist Sinica, 2010, 20: 167–181

    MathSciNet  MATH  Google Scholar 

  8. Liu D P, Zhou X H. Nonparametric estimation of the covariate-specific ROC curve in presence of ignorable verification bias. Biometrics, 2011, 67: 906–916

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma S G, Huang J. Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics, 2005, 21: 4356–4362

    Article  Google Scholar 

  10. McKean J W. Robust analysis of linear models. Statist Sci, 2004, 19: 562–570

    Article  MathSciNet  MATH  Google Scholar 

  11. Pepe M S. A Regression modelling framework for receiver operating characteristic curves in medical diagnostic testing. Biometrika, 1997, 84: 595–608

    Article  MathSciNet  MATH  Google Scholar 

  12. Pepe M S. Three approaches to regression analysis of receiver operating characteristic curves for continuous test results. Biometrics, 1998, 54: 124–135

    Article  MATH  Google Scholar 

  13. Pepe M S. Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford: Oxford University Press, 2003

    MATH  Google Scholar 

  14. Sherman R. The limiting distribution of the maximum rank correlation estimator. Econometrica, 1993, 61: 123–137

    Article  MathSciNet  MATH  Google Scholar 

  15. Sievers G. A weighted dispersion function for estimation in linear models. Comm Statist Theory Methods, 1983, 12: 1161–1179

    Article  MathSciNet  MATH  Google Scholar 

  16. Terpstra J T, McKean J W. Rank-based analyses of linear models using R. J Statist Softw, 2005, 14: 1–26

    Article  Google Scholar 

  17. Wang L, Li R Z. Weighted wilcoxon-type smoothly clipped absolute deviation method. J Amer Statist Assoc, 2009, 104: 1631–1645

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang Y J, Chen H H, Li R Z, et al. Prediction-based structured variable selection through the receiver operating characteristic curves. Biometrics, 2011, 67: 896–905

    Article  MathSciNet  MATH  Google Scholar 

  19. Zheng Y, Heagerty P J. Semiparametric estimation of time-dependent ROC curves for longitudinal marker data. Biostatistics, 2004, 5: 615–632

    Article  MATH  Google Scholar 

  20. Zhou X H, Obuchowski N A, McClish D K. Statistical Methods in Diagnostic Medicine, 2nd ed. New York: Wiley, 2011

    Book  MATH  Google Scholar 

  21. Zou H, Yuan M. Composite quantile regression and the oracle model selection theory. Ann Statist, 2008, 36: 1108–1126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11401561 and 11301031). The authors thank two referees for their valuable suggestions, and the National Alzheimer’s Coordinating Center for providing the data for analysis (the interpretation and reporting of the data are the sole responsibility of the authors).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHua Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Duan, X. & Zhou, X. A weighted Wilcoxon estimate for the covariate-specific ROC curve. Sci. China Math. 60, 1705–1716 (2017). https://doi.org/10.1007/s11425-015-0158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-0158-0

Keywords

MSC(2010)

Navigation