Abstract
We study nonlinear Schrödinger equations on Zoll manifolds with nonlinear growth of the odd order. It is proved that local uniform well-posedness are valid in the H s-subcritical setting according to the scaling invariance, apart from the cubic growth in dimension two. This extends the results by Burq et al. (2005) to higher dimensions with general nonlinearities.
Similar content being viewed by others
References
Alinhac S, Gérard P. Pseudo-Differential Operators and the Nash-Moser Theorem. Providence, RI: Amer Math Soc, 2007
Besse A. Manifolds All of Whose Geodesics are Closed. Berlin-New York: Springer-Verlag, 1978
Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations. Geom Funct Anal, 1993, 3: 107–156
Bourgain J. Exponential sums and nonlinear Schrödinger equations. Geom Funct Anal, 1993, 3: 157–178
Bourgain J. Global well-posedness of defocusing critical nonlinear Schrödinger equations in the radial case. J Amer Math Soc, 1999, 12: 145–171
Bourgain J. Global Solutions of Nonlinear Schrödinger Equations. Providence, RI: Amer Math Soc, 1999
Bourgain J. On Strichartz’s inequalities and the Nonlinear Schrödinger equation on irrational tori. Annl Math Studies, 2007, 163: 1–20
Bourgain J. Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Israel J Math, 2013, 193: 441–458
Bourgain J, Demeter C. Improved estimates for the discrete Fourier restriction to the higher dimensional sphere. Illinois J Math, arXiv:1205.2414, 2012
Bourgain J, Demeter C. New bounds for the discrete Fourier restriction to the sphere in four and five dimensions. Inter Math Res Not, doi: 10.1093/imrn/rnu036, 2014
Brezis H, Gallouët T. Nonlinear Schrödinger evolution equations. N Nonlinear Anal, 1980, 4: 677–681
Burq N, Gérard P. Control optimal des équations aux derivée partialles: Ecole polytechnique. http://www.math.u-psud.fr/burq/, 2020
Burq N, Gérard P, Tzvetkov N. A instability property of the nonlinear Schrödinger equation on S d. Math Res Lett, 2002, 9: 323–335
Burq N, Gérard P, Tzvetkov N, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer J Math, 2004, 126: 569–605
Burq N, Gérard P, Tzvetkov N. Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schröinger equations. A Ann Sci. École Norm Sup, 2005, 38: 255–301.
Burq N, Gérard P, Tzvetkov N. Bilinear eigenfunction estimates and the nonlinear Schröinger equation on surfaces. Invent Math, 2005, 159: 187–223
Burq N, Gérard P, Tzvetkov N. Global solutions for the nonlinear Schröinger equation on three dimensional compact manifolds. Annl Math Studies, 2007, 163: 111–129
Cazenave T. An Introduction to Nonlinear Schrödinger Equations. In: Textos de Métodos Matemáticos, vol. 26. Brazil: Rio de Janeiro, 1996
Cazenave T. Semilinear Schrödinger equations. Providence, RI: Amer Math Soc, 2003
Cazenave T, Weissler F. The Cauchy problem for the critical nonlinear Schrödinger equation in H s. Nonlinear Anal, 1990, 14: 807–836
Colliander J, Keel M, Staffilani G, et al. Global well-posedness and scattering for the energy critical nonlinear Schrödinger equation on ℝ3. Annl Math, 2008, 167: 767–865
Dodson B. Global well-posedness and scattering for the defocusing L 2-critical nonlinear Schrödinger equation when d = 1. ArXiv:1010.0 0040v2, 2010
Dodson B. Global well-posedness and scattering for the defocusing L 2-critical nonlinear Schrödinger equation when d = 2. ArXiv:1006.1 1375v2, 2010
Dodson B. Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the groud state. ArXiv:1104.1 1114v2, 2011
Dodson B. Global well-posedness and scattering for the defocusing L 2-critical nonlinear Schrödinger equations when d ⩾ 3. J Amer Math Soc, 2012, 25: 429–463
Gérard P. Nonlinear Schrödinger equations in inhomogeneous media: Wellposedness and illposedness of the Cauchy problem. In: Proceedings of the International Congress of Mathematicians. Madrid: European Mathematical Society, 2006, 157–182
Ginibre J. Le problème de Cauchy pour des edp semi-linéaires périodiques en variables d’espace (d’après Bourgain). Astérisque, 1996, 237: 163–187
Ginibre J, Velo G. The global Cauchy probelm for the nonlinear Schröndinger equation. Ann Inst H Poincaré Anal Non Linéaire, 1985, 2: 309–327
Ginibre J, Velo G. Smoothing properties and retarded estimates for some dispersive evolution equations. Commun Math Phys, 1992, 144: 163–188
Grillakis M. On nonlinear Schrödinger equations. Comm Partial Differential Equations, 2000, 25: 1827–1844
Guillemin V. Lectures on spectral theory of elliptic operators. Duke Math J, 1977, 44: 485–517
Herr S. The quintic nonlinear Schrödinger equation on three-dimensional Zoll manifolds. Amer J Math, 2013, 135: 1271–1290
Herr S, Tataru D, Tzvetkov N. Global well-posedness of the energy critical Nonlinear Schrödinger equation with small initial data in H 1(\(\mathbb{T}^3 \)). Duke Math J, 2011, 159: 329–349
Ionescu A, Pausader B. The energy-critical defocusing NLS on \(\mathbb{T}^3 \). Duke Math J, 2012, 161: 1581–1612
Kato T. On nonlinear Schrödinger equations. Ann Inst H. Poincaré Anal Non Linéaire, 1987, 46: 113–129
Keel M, Tao T. Endpoint Strichartz equations. Amer J Math, 1998, 120: 955–980
Kenig C, Merle F. Global well-posedness, scattering, and blow up for the energy critical, focusing nonlinear Schrödinger equation in the radial case. Invent Math, 2006, 166: 645–675
Kenig C, Merle F. Scattering for \(\dot H^{\tfrac{1} {2}} \) bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans Amer Math Soc, 2010, 362: 1937–1962
Kenig C, Ponce G, Vega L. A bilinear estimate with applications to the KdV equations. J Amer Math Soc, 1996, 9: 573–603
Killip R, Visan M. The focusing energy critical nonlinear Schrödinger equations in dimensions five and higeher. Amer J Math, 2010, 2: 361–424
Killip R, Visan M. Nonlinear Schrödinger equations at critical regularity. Clay Lecture Notes, http://www.math.ucla.edu/visan/lecturenotes.html, 2009
Koch H, Tataru D. Dispersive estimates for principally normal pseudodifferential operators. Comm Pure Appl Math, 2005, 58: 217–284
Pausader B, Tzevtkov N, Wang X. Global regularity for the energy-critical NLS on \(\mathbb{S}^3 \). Ann L’institut H Poincare Nonlinear Anal, 2014, 31: 315–338
Sogge C D. Fourier Integrals in Classical Analysis. Cambridge: Cambridge University Press, 1993
Strichartz R. Restriction of Fourier transforms to quadratic surface and decay of solutions of wave equations. Duke Math J, 1977, 44: 705–714
Tao T. Multilinear weighted convolutions of L 2 functions, and applications to nonlinear dispersive equations. Amer J Math, 2003, 123: 839–908
Tao T. Global well-posedness and scattering for the higher dimensional energy critical nonlinear Schrödinger equation for radial data. New York J Math, 2005, 11: 57–80
Tao T. Local well-posedness for the Yang-Mills equations in ℝ3+1 below the energy norm. J Differential Equations, 2003, 189: 366–382
Tao T. Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106. Providence, RI: Amer Math Soc, 2006
Tao T, Visan M, Zhang X. Global well-posedness and scattering for the defocusing mass critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math J, 2007, 140: 165–202
Tao T, Visan M, Zhang X. Minimal-mass blow up solutions of the mass-critical NLS. Forum Math, 2008, 20: 881–919
Tomas P A. A restriction theorem for the Fourier transform. Bull Amer Math Soc, 1987, 81: 415–426
Visan M. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math J, 2007, 138: 281–374
Yajima K. Existence of solutions for Schrödinger evolution equations. Comm Math Phys, 1987, 110: 415–426
Yosida K. Functional Analysis, 6th ed. New York: Springer-Verlag, 1995
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, J. Nonlinear Schrödinger equations on compact Zoll manifolds with odd growth. Sci. China Math. 58, 1023–1046 (2015). https://doi.org/10.1007/s11425-014-4947-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11425-014-4947-3