Skip to main content
Log in

Nonlinear Schrödinger equations on compact Zoll manifolds with odd growth

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study nonlinear Schrödinger equations on Zoll manifolds with nonlinear growth of the odd order. It is proved that local uniform well-posedness are valid in the H s-subcritical setting according to the scaling invariance, apart from the cubic growth in dimension two. This extends the results by Burq et al. (2005) to higher dimensions with general nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac S, Gérard P. Pseudo-Differential Operators and the Nash-Moser Theorem. Providence, RI: Amer Math Soc, 2007

    Book  MATH  Google Scholar 

  2. Besse A. Manifolds All of Whose Geodesics are Closed. Berlin-New York: Springer-Verlag, 1978

    Book  MATH  Google Scholar 

  3. Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations. Geom Funct Anal, 1993, 3: 107–156

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgain J. Exponential sums and nonlinear Schrödinger equations. Geom Funct Anal, 1993, 3: 157–178

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgain J. Global well-posedness of defocusing critical nonlinear Schrödinger equations in the radial case. J Amer Math Soc, 1999, 12: 145–171

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourgain J. Global Solutions of Nonlinear Schrödinger Equations. Providence, RI: Amer Math Soc, 1999

    MATH  Google Scholar 

  7. Bourgain J. On Strichartz’s inequalities and the Nonlinear Schrödinger equation on irrational tori. Annl Math Studies, 2007, 163: 1–20

    MathSciNet  Google Scholar 

  8. Bourgain J. Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Israel J Math, 2013, 193: 441–458

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourgain J, Demeter C. Improved estimates for the discrete Fourier restriction to the higher dimensional sphere. Illinois J Math, arXiv:1205.2414, 2012

    Google Scholar 

  10. Bourgain J, Demeter C. New bounds for the discrete Fourier restriction to the sphere in four and five dimensions. Inter Math Res Not, doi: 10.1093/imrn/rnu036, 2014

    Google Scholar 

  11. Brezis H, Gallouët T. Nonlinear Schrödinger evolution equations. N Nonlinear Anal, 1980, 4: 677–681

    Article  MATH  Google Scholar 

  12. Burq N, Gérard P. Control optimal des équations aux derivée partialles: Ecole polytechnique. http://www.math.u-psud.fr/burq/, 2020

    Google Scholar 

  13. Burq N, Gérard P, Tzvetkov N. A instability property of the nonlinear Schrödinger equation on S d. Math Res Lett, 2002, 9: 323–335

    Article  MATH  MathSciNet  Google Scholar 

  14. Burq N, Gérard P, Tzvetkov N, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer J Math, 2004, 126: 569–605

    Article  MATH  MathSciNet  Google Scholar 

  15. Burq N, Gérard P, Tzvetkov N. Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schröinger equations. A Ann Sci. École Norm Sup, 2005, 38: 255–301.

    MATH  Google Scholar 

  16. Burq N, Gérard P, Tzvetkov N. Bilinear eigenfunction estimates and the nonlinear Schröinger equation on surfaces. Invent Math, 2005, 159: 187–223

    Article  MATH  MathSciNet  Google Scholar 

  17. Burq N, Gérard P, Tzvetkov N. Global solutions for the nonlinear Schröinger equation on three dimensional compact manifolds. Annl Math Studies, 2007, 163: 111–129

    Google Scholar 

  18. Cazenave T. An Introduction to Nonlinear Schrödinger Equations. In: Textos de Métodos Matemáticos, vol. 26. Brazil: Rio de Janeiro, 1996

    Google Scholar 

  19. Cazenave T. Semilinear Schrödinger equations. Providence, RI: Amer Math Soc, 2003

    MATH  Google Scholar 

  20. Cazenave T, Weissler F. The Cauchy problem for the critical nonlinear Schrödinger equation in H s. Nonlinear Anal, 1990, 14: 807–836

    Article  MATH  MathSciNet  Google Scholar 

  21. Colliander J, Keel M, Staffilani G, et al. Global well-posedness and scattering for the energy critical nonlinear Schrödinger equation on ℝ3. Annl Math, 2008, 167: 767–865

    Article  MATH  MathSciNet  Google Scholar 

  22. Dodson B. Global well-posedness and scattering for the defocusing L 2-critical nonlinear Schrödinger equation when d = 1. ArXiv:1010.0 0040v2, 2010

    Google Scholar 

  23. Dodson B. Global well-posedness and scattering for the defocusing L 2-critical nonlinear Schrödinger equation when d = 2. ArXiv:1006.1 1375v2, 2010

    Google Scholar 

  24. Dodson B. Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the groud state. ArXiv:1104.1 1114v2, 2011

    Google Scholar 

  25. Dodson B. Global well-posedness and scattering for the defocusing L 2-critical nonlinear Schrödinger equations when d ⩾ 3. J Amer Math Soc, 2012, 25: 429–463

    Article  MATH  MathSciNet  Google Scholar 

  26. Gérard P. Nonlinear Schrödinger equations in inhomogeneous media: Wellposedness and illposedness of the Cauchy problem. In: Proceedings of the International Congress of Mathematicians. Madrid: European Mathematical Society, 2006, 157–182

    Google Scholar 

  27. Ginibre J. Le problème de Cauchy pour des edp semi-linéaires périodiques en variables d’espace (d’après Bourgain). Astérisque, 1996, 237: 163–187

    MathSciNet  Google Scholar 

  28. Ginibre J, Velo G. The global Cauchy probelm for the nonlinear Schröndinger equation. Ann Inst H Poincaré Anal Non Linéaire, 1985, 2: 309–327

    MATH  MathSciNet  Google Scholar 

  29. Ginibre J, Velo G. Smoothing properties and retarded estimates for some dispersive evolution equations. Commun Math Phys, 1992, 144: 163–188

    Article  MATH  MathSciNet  Google Scholar 

  30. Grillakis M. On nonlinear Schrödinger equations. Comm Partial Differential Equations, 2000, 25: 1827–1844

    Article  MATH  MathSciNet  Google Scholar 

  31. Guillemin V. Lectures on spectral theory of elliptic operators. Duke Math J, 1977, 44: 485–517

    Article  MathSciNet  Google Scholar 

  32. Herr S. The quintic nonlinear Schrödinger equation on three-dimensional Zoll manifolds. Amer J Math, 2013, 135: 1271–1290

    Article  MATH  MathSciNet  Google Scholar 

  33. Herr S, Tataru D, Tzvetkov N. Global well-posedness of the energy critical Nonlinear Schrödinger equation with small initial data in H 1(\(\mathbb{T}^3 \)). Duke Math J, 2011, 159: 329–349

    Article  MATH  MathSciNet  Google Scholar 

  34. Ionescu A, Pausader B. The energy-critical defocusing NLS on \(\mathbb{T}^3 \). Duke Math J, 2012, 161: 1581–1612

    Article  MATH  MathSciNet  Google Scholar 

  35. Kato T. On nonlinear Schrödinger equations. Ann Inst H. Poincaré Anal Non Linéaire, 1987, 46: 113–129

    MATH  Google Scholar 

  36. Keel M, Tao T. Endpoint Strichartz equations. Amer J Math, 1998, 120: 955–980

    Article  MATH  MathSciNet  Google Scholar 

  37. Kenig C, Merle F. Global well-posedness, scattering, and blow up for the energy critical, focusing nonlinear Schrödinger equation in the radial case. Invent Math, 2006, 166: 645–675

    Article  MATH  MathSciNet  Google Scholar 

  38. Kenig C, Merle F. Scattering for \(\dot H^{\tfrac{1} {2}} \) bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans Amer Math Soc, 2010, 362: 1937–1962

    Article  MATH  MathSciNet  Google Scholar 

  39. Kenig C, Ponce G, Vega L. A bilinear estimate with applications to the KdV equations. J Amer Math Soc, 1996, 9: 573–603

    Article  MATH  MathSciNet  Google Scholar 

  40. Killip R, Visan M. The focusing energy critical nonlinear Schrödinger equations in dimensions five and higeher. Amer J Math, 2010, 2: 361–424

    Article  MathSciNet  Google Scholar 

  41. Killip R, Visan M. Nonlinear Schrödinger equations at critical regularity. Clay Lecture Notes, http://www.math.ucla.edu/visan/lecturenotes.html, 2009

    Google Scholar 

  42. Koch H, Tataru D. Dispersive estimates for principally normal pseudodifferential operators. Comm Pure Appl Math, 2005, 58: 217–284

    Article  MATH  MathSciNet  Google Scholar 

  43. Pausader B, Tzevtkov N, Wang X. Global regularity for the energy-critical NLS on \(\mathbb{S}^3 \). Ann L’institut H Poincare Nonlinear Anal, 2014, 31: 315–338

    Article  MATH  Google Scholar 

  44. Sogge C D. Fourier Integrals in Classical Analysis. Cambridge: Cambridge University Press, 1993

    Book  MATH  Google Scholar 

  45. Strichartz R. Restriction of Fourier transforms to quadratic surface and decay of solutions of wave equations. Duke Math J, 1977, 44: 705–714

    Article  MATH  MathSciNet  Google Scholar 

  46. Tao T. Multilinear weighted convolutions of L 2 functions, and applications to nonlinear dispersive equations. Amer J Math, 2003, 123: 839–908

    Article  Google Scholar 

  47. Tao T. Global well-posedness and scattering for the higher dimensional energy critical nonlinear Schrödinger equation for radial data. New York J Math, 2005, 11: 57–80

    MATH  MathSciNet  Google Scholar 

  48. Tao T. Local well-posedness for the Yang-Mills equations in ℝ3+1 below the energy norm. J Differential Equations, 2003, 189: 366–382

    Article  MATH  MathSciNet  Google Scholar 

  49. Tao T. Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106. Providence, RI: Amer Math Soc, 2006

    Google Scholar 

  50. Tao T, Visan M, Zhang X. Global well-posedness and scattering for the defocusing mass critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math J, 2007, 140: 165–202

    Article  MATH  MathSciNet  Google Scholar 

  51. Tao T, Visan M, Zhang X. Minimal-mass blow up solutions of the mass-critical NLS. Forum Math, 2008, 20: 881–919

    Article  MATH  MathSciNet  Google Scholar 

  52. Tomas P A. A restriction theorem for the Fourier transform. Bull Amer Math Soc, 1987, 81: 415–426

    MathSciNet  Google Scholar 

  53. Visan M. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math J, 2007, 138: 281–374

    Article  MATH  MathSciNet  Google Scholar 

  54. Yajima K. Existence of solutions for Schrödinger evolution equations. Comm Math Phys, 1987, 110: 415–426

    Article  MATH  MathSciNet  Google Scholar 

  55. Yosida K. Functional Analysis, 6th ed. New York: Springer-Verlag, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianWei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J. Nonlinear Schrödinger equations on compact Zoll manifolds with odd growth. Sci. China Math. 58, 1023–1046 (2015). https://doi.org/10.1007/s11425-014-4947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4947-3

Keywords

MSC(2010)

Navigation