Skip to main content
Log in

Wolbachia infection dynamics by reaction-diffusion equations

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Dengue fever is caused by the dengue virus and transmitted by Aedes mosquitoes. A promising avenue for eradicating the disease is to infect the wild aedes population with the bacterium Wolbachia driven by cytoplasmic incompatibility (CI). When releasing Wolbachia infected mosquitoes for population replacement, it is essential to not ignore the spatial inhomogeneity of wild mosquito distribution. In this paper, we develop a model of reaction-diffusion system to investigate the infection dynamics in natural areas, under the assumptions supported by recent experiments such as perfect maternal transmission and complete CI. We prove non-existence of inhomogeneous steady-states when one of the diffusion coefficients is sufficiently large, and classify local stability for constant steady states. It is seen that diffusion does not change the criteria for the local stabilities. Our major concern is to determine the minimum infection frequency above which Wolbachia can spread into the whole population of mosquitoes. We find that diffusion drives the minimum frequency slightly higher in general. However, the minimum remains zero when Wolbachia infection brings overwhelming fitness benefit. In the special case when the infection does not alter the longevity of mosquitoes but reduces the birth rate by half, diffusion has no impact on the minimum frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bian G W, Xu Y, Lu P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog, 2010, 6: e1000833

    Article  Google Scholar 

  2. Calisher C H. Persistent emergence of dengue. Emerg Infect Dis, 2005, 11: 738–739

    Article  Google Scholar 

  3. Caspari E, Watson G S. On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 1959, 13: 568–570

    Article  Google Scholar 

  4. Casten R G, Holland C J. Stability properties of solutions to systems of reaction-diffusion equations. SIAM J Appl Math, 1977, 33: 353–364

    Article  MathSciNet  MATH  Google Scholar 

  5. Du Y H, Wang M X. Asymptotic behavior of positive steady-states to a predator-prey model. Proc Roy Soc Edinburgh Sect A, 2006, 136: 759–778

    Article  MathSciNet  MATH  Google Scholar 

  6. Farkas J Z, Hinow P. Structured and unstructured continuous models for Wolbachia infections. Bull Math Biol, 2010, 72: 2067–2088

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedman A. Partial Differential Equations of Parabolic Type. Englewood Cliffs, NJ: Prentice-Hall, 1964

    MATH  Google Scholar 

  8. Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math, vol. 840. Berlin-New York: Springer-Verlag, 1981

    MATH  Google Scholar 

  9. Hirsch M W, Smale S, Devaney R. Differential Equations, Dynamical Systems, and an Introduction to Chaos, 2nd ed. Orlando: Academic Press, 2003

    Google Scholar 

  10. Hoffmann A A, Montgomery B L, Popovici J, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 2011, 476: 454–457

    Article  Google Scholar 

  11. Hoffmann A A, Turelli M, Harshman L G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics, 1990, 126: 933–948

    Google Scholar 

  12. Keeling M J, Jiggins F M, Read J M. The invasion and coexistence of competing Wolbachia strains. Heredity, 2003, 91: 382–388

    Article  Google Scholar 

  13. Kyle J L, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol, 2008, 62: 71–92

    Article  Google Scholar 

  14. Lin C S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotaxis system. J Diff Equ, 1988, 72: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  15. Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J Diff Equ, 1996, 131: 79–131

    Article  MathSciNet  MATH  Google Scholar 

  16. Mcmeniman C J, Lane R V, Cass B N, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypi. Science, 2009, 323: 141–144

    Article  Google Scholar 

  17. Mottoni P D, Rothe F. Convergence to homogeneous equilibrium state for generalized Lotka-Volterra systems with diffusion. SIAM J Appl Math, 1979, 37: 648–663

    Article  MathSciNet  MATH  Google Scholar 

  18. Ni W M, Tang M X. Turing patterns in the Lengyel-Epstwin system for the CIMA rection. Trans Amer Math Soc, 2005, 357: 3953–3969

    Article  MathSciNet  MATH  Google Scholar 

  19. Ormaetxe I I, Walker T, O’Neill S L. Wolbachia and the biological control of mosquito-borne disease. EMBO Reports, 2011, 12: 508–518

    Article  Google Scholar 

  20. Pang Y H, Wang M X. Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc Roy Soc Edinburgh Sect A, 2003, 133: 919–942

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng R, Shi J P, Wang M X. Stationary pattern of a ratio-dependent food chain model with diffusion. SIAM J Appl Math, 2007, 67: 1479–1503

    Article  MathSciNet  MATH  Google Scholar 

  22. Protter M H, Weinberger H F. Maximum Principles in Differential Equations. Berlin-New York: Springer-Verlag, 1984

    Book  MATH  Google Scholar 

  23. Turelli M. Evolution of incompatibility-inducing microbes and their hosts. Evolution, 1994, 48: 1500–1513

    Article  Google Scholar 

  24. Turelli M. Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 2010, 64: 232–241

    Article  Google Scholar 

  25. Turelli M, Hoffmann A A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature, 1991, 353: 440–442

    Article  Google Scholar 

  26. Turelli M, Hoffmann A A. Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol, 1999, 8: 243–255

    Article  Google Scholar 

  27. Walker T, Johnson P H, Moreira L A, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 2011, 476: 450–453

    Article  Google Scholar 

  28. Weinberger H F. Invariant sets for weakly coupled parabolic and elliptic systems. Rend Mat, 1975, 8: 295–310

    MathSciNet  MATH  Google Scholar 

  29. Xi Z Y, Khoo C C, Dobson S L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science, 2005, 310: 326–328

    Article  Google Scholar 

  30. Zheng B, Tang M X, Yu J S. Modeling Wolbachia spread in mosquitoes through delay differential equation. SIAM J Appl Math, 2014, 74: 743–770

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou L, Pao C V. Asymptotic behavior of a competition diffusion system in population dynamics. Nonlinear Anal Theor Meth Appl, 1982, 6: 1163–1184

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianShe Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Tang, M. & Yu, J. Wolbachia infection dynamics by reaction-diffusion equations. Sci. China Math. 58, 77–96 (2015). https://doi.org/10.1007/s11425-014-4934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4934-8

Keywords

MSC(2010)

Navigation