Skip to main content
Log in

An SDP randomized approximation algorithm for max hypergraph cut with limited unbalance

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the design of semidefinite programming (SDP) based approximation algorithm for the problem Max Hypergraph Cut with Limited Unbalance (MHC-LU): Find a partition of the vertices of a weighted hypergraph H = (V,E) into two subsets V 1, V 2 with ||V 2| − |V 1|| ⩽ u for some given u and maximizing the total weight of the edges meeting both V 1 and V 2. The problem MHC-LU generalizes several other combinatorial optimization problems including Max Cut, Max Cut with Limited Unbalance (MC-LU), Max Set Splitting, Max Ek-Set Splitting and Max Hypergraph Bisection. By generalizing several earlier ideas, we present an SDP randomized approximation algorithm for MHC-LU with guaranteed worst-case performance ratios for various unbalance parameters τ = u/|V |. We also give the worst-case performance ratio of the SDP-algorithm for approximating MHC-LU regardless of the value of τ. Our strengthened SDP relaxation and rounding method improve a result of Ageev and Sviridenko (2000) on Max Hypergraph Bisection (MHC-LU with u = 0), and results of Andersson and Engebretsen (1999), Gaur and Krishnamurti (2001) and Zhang et al. (2004) on Max Set Splitting (MHC-LU with u = |V|). Furthermore, our new formula for the performance ratio by a tighter analysis compared with that in Galbiati and Maffioli (2007) is responsible for the improvement of a result of Galbiati and Maffioli (2007) on MC-LU for some range of τ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ageev A A, Sviridenko M I. Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: Proceedings of Integer Programming and Combinatorial Optimization. Berlin: Springer, 1999, 17–30

    Chapter  Google Scholar 

  2. Ageev A A, Sviridenko M I. An approximation algorithm for Hypergraph Max k-Cut with given sizes of parts. In: Paterson M, ed. Proceedings of the 8th Annual European Symposium on Algorithms. Lecture Notes in Comput Sci. New York: Springer-Verlag, 2000, 32–41

    Google Scholar 

  3. Alimonti P. Non-oblivious local search for graph and hypergraph coloring problems. In: Proceedings of 21st International Workshop on Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Sciences, vol. 1017. Berlin: Springer, 1995, 167–180

    Chapter  Google Scholar 

  4. Andersson G. An approximation algorithm for max p-section. In: Proceedings of 16th International Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 1563. Berlin: Springer-Verlag, 1999, 237–247

    Google Scholar 

  5. Andersson G, Engebretsen L. Better approximation algorithms for Set splitting and Not-All-Equal SAT. Inform Process Lett, 1998, 65: 305–311

    Article  MathSciNet  Google Scholar 

  6. Arora S, Karger D, Karpinshi M. Polynomial Time Approximation Schemes for Dense Instances of NP-hard problems. J Comput Syst Sci, 1999, 58: 193–210

    Article  MATH  Google Scholar 

  7. Austrin P, Benabbas S, Georgiou K. Better Balance by Being Biased: A 0.8776-Approximation for Max Bisection. ArXiv:1205.0458

  8. Bollobás B, Scott A D. Problems and results on judicious partitions. Random Struct Alg, 2002, 21: 414–430

    Article  MATH  Google Scholar 

  9. Bollobás B, Scott A D. Judicious partitions of bounded-degree graphs. J Graph Theory, 2004, 46: 131–143

    Article  MATH  MathSciNet  Google Scholar 

  10. Cong J, Li H P, Lim S K, et al. Large scale circuit partitioning with loose stable net removal and signal flow based clustering. ICCAD, 1997, 441–446

    Google Scholar 

  11. Feige U, Goemans M X. Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT. In: Proceedings of 3rd Israel Symposium on the Theory of Computing and Systems. Tel Aviv: IEEE Computer Society, 1995, 182–189

    Chapter  Google Scholar 

  12. Feige U, Karpinski M. Langberg M. A note on approximating Max-Bisection on regu-lar graphs. Inform Process Lett, 2001, 79: 181–188

    Article  MATH  MathSciNet  Google Scholar 

  13. Feige U, Karpinski M, Langberg M. Improved approximation of max-cut on graphs of bounded degree. J Algorithms, 2002, 43: 201–219

    Article  MATH  MathSciNet  Google Scholar 

  14. Feige U, Langberg M. Approximation algorithms for maximization problems arising in graph partitioning. J Algorithms, 2001, 41: 174–211

    Article  MATH  MathSciNet  Google Scholar 

  15. Feige U, Langberg M. The RPR2 rounding technique for semidefinite programs. J Algorithms, 2006, 60: 1–23

    Article  MATH  MathSciNet  Google Scholar 

  16. Frieze V, Jerrum M. Improved approximation algorithms for max k-cut and max bisection. Algorithmica, 1997, 18: 67–81

    Article  MATH  MathSciNet  Google Scholar 

  17. Galbiati G, Maffioli F. Approximation algorithms for maximum cut with limited unbalance. Theor Comput Sci, 2007, 385: 78–87

    Article  MATH  MathSciNet  Google Scholar 

  18. Gaur D R, Krishnamurti R. Simple approximation algorihtms for MAXNAEESP and Hypergraph 2-colorability. J Combin Optim, 2001, 5: 167–173

    Article  MATH  MathSciNet  Google Scholar 

  19. Gomans M X, Williamson D P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J ACM, 1995, 42: 1115–1145

    Article  Google Scholar 

  20. Guruswami V. Inapproximability results for set splitting and satisfiability problems with no mixed clauses. Algorithmica, 2003, 38: 451–469

    Article  MathSciNet  Google Scholar 

  21. Halperin E, Zwick U. A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Struct Alg, 2002, 20: 382–402

    Article  MATH  MathSciNet  Google Scholar 

  22. Han Q, Ye Y, Zhang J. An improved rounding method and semidefinite programming relaxation for graph partition. Math Program, 2002, 92: 509–535

    Article  MATH  MathSciNet  Google Scholar 

  23. Hassin R, Rubinstein S. Approximation algorithms for maximum linear arrangement. In: Halldórsson M M, ed. Proceedings of the 7th Scandinavian Workshop on Algorithm Theory. Lecture Notes In Comput Sci, vol. 1851. New York: Springer-Verlag, 2000, 231–236

    Google Scholar 

  24. Håstad J. Some optimal inapproximability results. J ACM, 2001, 48: 798–859

    Article  MATH  MathSciNet  Google Scholar 

  25. Hauck S, Borriello G. An Evaluation of Bipartitioning Techniques. IEEE Trans CAD, 1997, 16: 849–866

    Article  Google Scholar 

  26. Huang Y, Zhang S. Approximation algorithms for indefinite complex quadratic maximization problems. Sci China Math, 2010, 53: 2697–2708

    Article  MATH  MathSciNet  Google Scholar 

  27. Jäger G, Srivastav A. Improved approximation algorithms for maximum graph partitioning problems. J Combin Optim, 2005, 10: 133–167

    Article  MATH  Google Scholar 

  28. Kann V, Lagergren J, Panconesi A. Approximability of maximum splitting of k-sets and some other APX-complete problems. Inform Process Lett, 1996, 58: 105–110

    Article  MATH  MathSciNet  Google Scholar 

  29. Karypis G, Aggarwal R, Kumar V, et al. Multilevel hypergraph partitioning: Applications in VLSI domain. IEEE Trans VLSI Syst, 1999, 7: 69–79

    Article  Google Scholar 

  30. Lee C, Loh P S, Sudakov B. Bisections of graphs. ArXiv:1109.3180, 2011

    Google Scholar 

  31. Liu L T, Kuo M T, Huang S C, et al. A Gradient Method on the Initial Partition of Fiduccia-Mattheyses Algorithm. In: Proceedings of the 1995 IEEE/ACM international conference on Computer-aided design. Washington, DC: IEEE Computer Society, 1995, 229–234

    Google Scholar 

  32. Lovász L. Coverings and colorings of hypergraphs. In: Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing. Winnipeg: Utilitas Mathematica Publishing, 1973, 3–12

    Google Scholar 

  33. Nesterov Y E. Semidefinite relaxation and nonconvex quadratic optimization. Optimi Methods Softw, 1998, 9: 141–160

    Article  MATH  MathSciNet  Google Scholar 

  34. Petrank E. The hardness of approximation: gap location. Comput Complex, 1994, 4: 133–157

    Article  MATH  MathSciNet  Google Scholar 

  35. Raghavendra P, Tan N. Approximating CSPs with global cardinality constraints using SDP hierarchies. ArXiv:1110.1064, 2012

    Google Scholar 

  36. Sanchis L. Multiple-way Network Partitioning with Different Cost Functions. IEEE Trans Comp, 1993, 42: 1500–1504

    Article  Google Scholar 

  37. Xia Y. New semidefinite programming relaxations for box constrained quadratic program. Sci China Math, 2013, 56: 877–886

    Article  MATH  MathSciNet  Google Scholar 

  38. Xu B, Yan J, Yu X. Balanced judicious partitions of graphs. J Graph Theory, 2010, 63: 210–225

    MATH  MathSciNet  Google Scholar 

  39. Xu B, Yan J, Yu X. A note on balanced bipartition. Discrete Math, 2010, 310: 2613–2617

    Article  MATH  MathSciNet  Google Scholar 

  40. Xu B, Yu X. On judicious bisections of graphs. J Combin Theory Ser B, 2014, 106: 30–69

    Article  MATH  MathSciNet  Google Scholar 

  41. Ye Y. A 699-approximation algorithm for max-bisection. Math Program Ser A, 2001, 90: 101–111

    Article  MATH  Google Scholar 

  42. Zhang J, Ye Y, Han Q. Improved Approximations for Max Set Splitting and Max NAE SAT. Disc Appl Math 2004, 142: 133–149

    Article  MATH  MathSciNet  Google Scholar 

  43. Zwick U. Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia: Society for Industrial and Applied Mathematics, 1998, 201–210

    Google Scholar 

  44. Zwick U. Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing. New York: ACM, 1999, 679–687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Yu, X., Zhang, X. et al. An SDP randomized approximation algorithm for max hypergraph cut with limited unbalance. Sci. China Math. 57, 2437–2462 (2014). https://doi.org/10.1007/s11425-014-4900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4900-5

Keywords

MSC(2010)

Navigation