Skip to main content
Log in

How big are the increments of G-Brownian motion?

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the problem: How big are the increments of G-Brownian motion. We obtain the Csörgő and Révész’s type theorem for the increments of G-Brownian motion. As applications of this result, we get the law of iterated logarithm and the Erdős and Rényi law of large numbers for G-Brownian motion. Furthermore, it turns out that our theorems are natural extensions of the classical results obtained by Csörgő and Révész (1979).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk. Math Finance, 1999, 9: 203–228

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen Z J. Strong laws of large numbers for capacities. ArXiv:1006.0749v1, 2010

    Google Scholar 

  3. Chen Z J, Hu F. A law of the iterated logarithm under sublinear expectations. ArXiv:1103.2965v1, 2011

    Google Scholar 

  4. Choquet F. Theory of capacities. Ann Inst Fourier, 1953, 5: 131–195

    Article  MathSciNet  Google Scholar 

  5. Csáki E, Csörgő M, Shao Q M. Fernique type inequalities and moduli of continuity for l 2-valued Ornstein-Uhlenbeck processes. Ann Inst H Poincaré Probab Statist, 1992, 28: 479–517

    MATH  Google Scholar 

  6. Csörgő M, Révész P. How big are the increments of a wiener process. Ann Probab, 1979, 7: 731–737

    Article  MathSciNet  Google Scholar 

  7. Csörgő M, Shao Q M. Strong limit theorems for large and small increments of l p-valued Gaussian processes. Ann Probab, 1993, 21: 1958–1990

    Article  MathSciNet  Google Scholar 

  8. Delbaen F. Coherent risk measures on general probability spaces. In: Sandmann K, Schönbucher P J, eds. Advances in Finance and Stochastics. New York: Springer-Verlag, 2002, 1–37

    Chapter  Google Scholar 

  9. Denis L, Hu M S, Peng S G. Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion paths. Potential Anal, 2011, 34: 139–161

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdős P, Rényi A. On a new law of large numbers. J Anal Math, 1970, 13: 103–111

    Article  Google Scholar 

  11. Föllmer H, Schied A. Convex measures of risk and trading constraints. Finance Stoch, 2002, 6: 429–447

    Article  MATH  MathSciNet  Google Scholar 

  12. Frittelli M, Rosazza Gianin E. Putting order in risk measures. J Banking Finance, 2002, 26: 1473–1486

    Article  Google Scholar 

  13. Frittelli M, Rossaza Gianin E. Dynamic convex risk measures. In: Szegö G, ed. New Risk Measures for the 21st Century. New York: John Wiley & Sons, 2004, 227–248

    Google Scholar 

  14. Gao F Q. Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Process Appl, 2009, 119: 3356–3382

    Article  MATH  MathSciNet  Google Scholar 

  15. Gao F Q, Jiang H. Large deviations for stochastic differential equations driven by G-Brownian motion. Stochastic Process Appl, 2010, 120: 2212–2240

    Article  MATH  MathSciNet  Google Scholar 

  16. Hanson D L, Russo R P. Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables. Ann Probab, 1983, 11: 609–623

    Article  MATH  MathSciNet  Google Scholar 

  17. Hu F. On Cramér’s theorem for capacities. C R Math Acad Sci Paris, 2010, 348: 1009–1013

    Article  MATH  MathSciNet  Google Scholar 

  18. Hu F. Moment bounds for IID sequences under sublinear expectations. Sci China Math, 2011, 54: 2155–2160

    Article  MATH  MathSciNet  Google Scholar 

  19. Hu F, Zhang D F. Central limit theorem for capacities. C R Math Acad Sci Paris, 2010, 348: 1111–1114

    Article  MATH  MathSciNet  Google Scholar 

  20. Ortega J, Wschebor M. On the increments of the Wiener process. Wahr Verwandte Geb, 1984, 65: 329–339

    Article  MATH  MathSciNet  Google Scholar 

  21. Peng S G. G-Expectation, G-Brownian motion and related stochasticcal culus of Itô’s type. In: Benth F E, et al, eds. Stochastic Analysis and Applications, Proceedings of the 2005 Abel Symposium 2. New York: Springer-Verlag, 2006, 541–567

    Google Scholar 

  22. Peng S G. Law of large numbers and central limit theorem under nonlinear expectations. ArXiv:math.PR/0702358vl, 2007

    Google Scholar 

  23. Peng S G. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process Appl, 2008, 118: 2223–2253

    Article  MATH  MathSciNet  Google Scholar 

  24. Peng S G. A new central limit theorem under sublinear expectations. ArXiv:0803.2656vl, 2008

    Google Scholar 

  25. Peng S G. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci China Ser A, 2009, 52: 1391–1411

    Article  MATH  MathSciNet  Google Scholar 

  26. Peng S G. Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and G-Brownian motion. ArXiv:math.PR/1002.4546v1, 2010

    Google Scholar 

  27. Soner H M, Touzi N, Zhang J F. Martingale representation theorem for the G-expectation. Stochastic Process Appl, 2011, 121: 265–287

    Article  MATH  MathSciNet  Google Scholar 

  28. Song Y S. Some properties on G-evalution and its applications to G-martingale decomposition. Sci China Math, 2011, 54: 287–300

    Article  MATH  MathSciNet  Google Scholar 

  29. Song Y S. Properties of hitting times for G-martingales and their applicaions. Stochastic Process Appl, 2011, 121: 1770–1784

    Article  MATH  MathSciNet  Google Scholar 

  30. Strassen V. An invariance principle for the law of the iterated logarithm. Wahr Verwandte Gebs, 1964, 3: 211–226

    Article  MATH  MathSciNet  Google Scholar 

  31. Xu J, Zhang B. Martingale characterization of G-Brownian motion. Stochastic Process Appl, 2009, 119: 232–248

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Chen, Z. & Zhang, D. How big are the increments of G-Brownian motion?. Sci. China Math. 57, 1687–1700 (2014). https://doi.org/10.1007/s11425-014-4816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4816-0

Keywords

MSC(2010)

Navigation