Skip to main content
Log in

Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied. For well-prepared initial data, it is shown that the smooth solution of compressible Navier-Stokes-Maxwell equations converges to the smooth solution of incompressible Navier-Stokes equations by introducing new modulated energy functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenier Y. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2000, 25: 737–754

    Article  MATH  MathSciNet  Google Scholar 

  2. Brenier Y, Mauser N J, Puel M. Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system. Commun Math Sci, 2003, 1: 437–447

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen G Q, Jerome J W, Wang D H. Compressible Euler-Maxwell equations. Transport Theory Statist Phys, 2000, 29: 311–331

    Article  MATH  MathSciNet  Google Scholar 

  4. Cordier S, Grenier E. Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm Partial Differential Equations, 2000, 25: 1099–1113

    Article  MATH  MathSciNet  Google Scholar 

  5. Grenier E. Oscillations in quasineutral plasmas. Comm Partial Differential Equations, 1996, 21: 363–394

    Article  MATH  MathSciNet  Google Scholar 

  6. Gasser I, Hsiao L, Markowich P A, et al. Quasineutral limit of a nonlinear drift-diffusion model for semiconductor models. J Math Anal Appl, 2002, 268: 184–199

    Article  MATH  MathSciNet  Google Scholar 

  7. Gasser I, Levermore C D, Markowich P, et al. The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model. European J Appl Math, 2001, 12: 497–512

    Article  MATH  MathSciNet  Google Scholar 

  8. Hsiao L, Li F C, Wang S. Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations. Sci China Ser A, 2006, 49: 255–266

    Article  MathSciNet  Google Scholar 

  9. Jerome J W. The Cauchy problem for compressible hydrodynamic-Maxwell systems: A local theory for smooth solutions. Differential Integral Equations, 2003, 16: 1345–1368

    MATH  MathSciNet  Google Scholar 

  10. Jiang S, Ju Q C, Li H L, et al. Quasi-neutral limit of the full bipolar Euler-Poisson system. Sci China Math, 2010, 53: 3099–3114

    Article  MATH  MathSciNet  Google Scholar 

  11. Ju Q C, Li F C, Li H L. The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differential Equations, 2009, 247: 203–224

    Article  MATH  MathSciNet  Google Scholar 

  12. Kato T. Nonstationary flow of viscous and ideal fluids in ℝ3. J Funct Anal, 1972, 9: 296–305

    Article  MATH  Google Scholar 

  13. Li F C. Quasineutral limit of the viscous quantum hydrodynamic model for semiconductors. J Math Anal Appl, 2009, 352: 620–628

    Article  MATH  MathSciNet  Google Scholar 

  14. Li H L, Lin C K. Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors. Comm Math Phys, 2005, 256: 195–212

    Article  MATH  MathSciNet  Google Scholar 

  15. Li Y. Convergence of the non-isentropic Euler-Poisson equations to incompressible type Euler equations. J Math Anal Appl, 2008, 342: 1107–1125

    Article  MATH  MathSciNet  Google Scholar 

  16. Lions P L, Masmoudi N. Incompressible limit for a viscous compressible fluid. J Math Pure Appl, 1998, 77: 585–627

    MATH  MathSciNet  Google Scholar 

  17. Masmoudi N. From Vlasov-Poisson system to the incompressible Euler system. Comm Partial Differential Equations, 2001, 26: 1913–1928

    MATH  MathSciNet  Google Scholar 

  18. McGrath F J. Nonstationary plane flow of viscous and ideal fluids. Arch Ration Mech Anal, 1968, 27: 229–348

    MathSciNet  Google Scholar 

  19. Peng Y J, Wang S. Rigorus derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations. SIAM J Math Anal, 2008, 40: 540–565

    MATH  MathSciNet  Google Scholar 

  20. Peng Y J, Wang S. Convergence of compressible Euler-Maxwell equations to incompressible Eule equations. Comm Partial Differential Equations, 2008, 33: 349–376

    MATH  MathSciNet  Google Scholar 

  21. Peng Y J, Wang Y G. Convergence of compressible Euler-Poisson equations to incompressible type Euler equations. Asymptotic Anal, 2005, 41: 141–160

    MATH  MathSciNet  Google Scholar 

  22. Wang S. Quasineutral limit of Euler-Poisson system with and without viscosity. Comm Partial Differential Equations, 2004, 29: 419–456

    MATH  MathSciNet  Google Scholar 

  23. Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2006, 31: 571–591

    MATH  MathSciNet  Google Scholar 

  24. Wang S, Xin Z P, Markowich P A. Quasi-neutral limit of the drift-diffusion models for semiconductors: The case of general sign-changing doping profile. SIAM J Math Anal, 2006, 37: 1854–1889

    MATH  MathSciNet  Google Scholar 

  25. Yang JW, Wang S. Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations. J Math Phys, 2009, 50: 123508

    MathSciNet  Google Scholar 

  26. Yang J W, Wang S. The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma. Nonlinear Anal, 2010, 72: 1829–1840

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianWei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wang, S. Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations. Sci. China Math. 57, 2153–2162 (2014). https://doi.org/10.1007/s11425-014-4792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4792-4

Keywords

MSC(2010)

Navigation