Skip to main content
Log in

Inner iterations in the shift-invert residual Arnoldi method and the Jacobi-Davidson method

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We establish a general convergence theory of the Shift-Invert Residual Arnoldi (SIRA) method for computing a simple eigenvalue nearest to a given target σ and the associated eigenvector. In SIRA, a subspace expansion vector at each step is obtained by solving a certain inner linear system. We prove that the inexact SIRA method mimics the exact SIRA well, i.e., the former uses almost the same outer iterations to achieve the convergence as the latter does if all the inner linear systems are iteratively solved with low or modest accuracy during outer iterations. Based on the theory, we design practical stopping criteria for inner solves. Our analysis is on one step expansion of subspace and the approach applies to the Jacobi-Davidson (JD) method with the fixed target σ as well, and a similar general convergence theory is obtained for it. Numerical experiments confirm our theory and demonstrate that the inexact SIRA and JD are similarly effective and are considerably superior to the inexact SIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai Z, Barret R, Day D, et al. Test matrix collection for non-Hermitian eigenvalue problems. http://math.nist.gov/MatrixMarket/

  2. Bai Z, Demmel J, Dongarra J, et al. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia, PA: SIAM, 2000

    Book  Google Scholar 

  3. Freitag M A, Spence A. Shift-and-invert Arnoldi’s method with preconditioned iterative solvers. SIAM J Matrix Anal Appl, 2009, 31: 942–969

    Article  MathSciNet  Google Scholar 

  4. Hochstenbach M E, Notay Y. Controlling inner iterations in the Jacobi-Davidson method. SIAM J Matrix Anal Appl, 2009, 31: 460–477

    Article  MATH  MathSciNet  Google Scholar 

  5. Jia Z. The convergence of generalized Lanczos methods for large unsymmetric eigenproblems. SIAM J Matrix Anal Appl, 1995, 16: 843–862

    Article  MATH  MathSciNet  Google Scholar 

  6. Jia Z. Refined iterative algorithms based on Arnoldi’s process for unsymmmetric eigenproblems. Linear Algebra Appl, 1997, 259: 1–23

    Article  MATH  MathSciNet  Google Scholar 

  7. Jia Z. Generalized block Lanczos methods for large unsymmetric eigenproblems. Numer Math, 1998, 80: 239–266

    Article  MATH  MathSciNet  Google Scholar 

  8. Jia Z. The convergence of harmonic Ritz values, harmonic Ritz vectors and refined harmonic Ritz vectors. Math Comput, 2005, 74: 1441–1456

    Article  MATH  Google Scholar 

  9. Jia Z, Stewart G W, An analysis of the Rayleigh-Ritz method for approximating eigenspaces. Math Comput, 2001, 70: 637–648

    Article  MATH  MathSciNet  Google Scholar 

  10. Lee C. Residual Arnoldi method: Theory, package and experiments. PhD thesis, TR-4515, Department of Computer Science, University of Maryland at College Park, 2007

    Google Scholar 

  11. Lee C, Stewart G W. Analysis of the residual Arnoldi method. TR-4890, Department of Computer Science, University of Maryland at College Park, 2007

    Google Scholar 

  12. Morgan R B. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM J Matrix Anal Appl, 2000, 21: 1112–1135

    Article  MATH  MathSciNet  Google Scholar 

  13. Notay Y. Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem. Numer Linear Algebra Appl, 2002, 9: 21–44

    Article  MATH  MathSciNet  Google Scholar 

  14. Parlett B N. The Symmetric Eigenvalue Problem. Philadelphia, PA: SIAM, 1998

    Book  MATH  Google Scholar 

  15. Saad Y. Numerical Methods for Large Eigenvalue Problems. Manchester: Manchester University Press, 1992

    MATH  Google Scholar 

  16. Simoncini V. Variable accuracy of matrix-vector products in projection methods for eigencomputation. SIAM J Numer Anal, 2005, 43: 1155–1174

    Article  MATH  MathSciNet  Google Scholar 

  17. Simoncini V, Szyld D B. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J Sci Comput, 2003, 25: 454–477

    Article  MATH  MathSciNet  Google Scholar 

  18. Sleijpen G L G, Van der Vorst H. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J Matrix Anal Appl, 1996, 17: 401–425

    Article  MATH  MathSciNet  Google Scholar 

  19. Stathopoulos A. Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory, I: Seeking one eigenvalue. SIAM J Sci Comput, 2007, 29: 2162–2188

    Article  MATH  MathSciNet  Google Scholar 

  20. Stewart G W. Matrix Algorithms II: Eigensystems. Philadelphia, PA: SIAM, 2001

    Book  MATH  Google Scholar 

  21. van der Vorst H. Computational Methods for Large Eigenvalue Problems. North Hollands: Elsevier, 2002

    Google Scholar 

  22. Voss H. A new justification of the Jacobi-Davidson method for large eigenproblems. Linear Algebra Appl, 2007, 424: 448–455

    Article  MATH  MathSciNet  Google Scholar 

  23. Xue F, Elman H. Fast inexact implicitly restarted Arnoldi method for generalized eigenvalue problems with spectral transformation. SIAM J Matrix Anal Appl, 2012, 33: 433–459

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongXiao Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z., Li, C. Inner iterations in the shift-invert residual Arnoldi method and the Jacobi-Davidson method. Sci. China Math. 57, 1733–1752 (2014). https://doi.org/10.1007/s11425-014-4791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4791-5

Keywords

MSC(2010)

Navigation