Skip to main content
Log in

Efficient implementation of the Barnes-Hut octree algorithm for Monte Carlo simulations of charged systems

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents. The appropriate treatment of long-range electrostatic interaction is essential for these charged systems, but remains a challenging problem for large-scale simulations. We have developed an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems. The algorithm is based on a divideand-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure. We test the accuracy of the tree algorithm, and use it to perform computer simulations of electric double layer near a spherical interface. It has been shown that the computational cost of the Monte Carlo method with treecode acceleration scales as log N in each move. For a typical system with ten thousand particles, by using the new algorithm, the speed has been improved by two orders of magnitude from the direct summation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen M P, Tildesley D J. Computer Simulations of Liquids. Oxford: Oxford University Press, 1987

    Google Scholar 

  2. Appel A. An efficient program for many-body simulations. SIAM J Sci Stat Comput, 1985, 6: 85–103

    Article  MathSciNet  Google Scholar 

  3. Barnes J, Hut P. A hierarchical O(NlogN) force-calculation algorithm. Nature, 1986, 324: 446–449

    Article  Google Scholar 

  4. Boroudjerdi H, Kim Y W, Naji A, et al. Statics and dynamics of strongly charged soft matter. Phys Rep, 2005, 416: 129–199

    Article  Google Scholar 

  5. Cheng H, Greengard L, Rokhlin V. A fast adaptive multipole algorithm in three dimensions. J Comput Phys, 1999, 155: 468–498

    Article  MATH  MathSciNet  Google Scholar 

  6. Darden T A, York D M, Pedersen L G. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98: 10089–10092

    Article  Google Scholar 

  7. Deserno M, Jiménez-ángeles F, Holm C, et al. Overcharging of dna in the presence of salt: Theory and simulation. J J Phys Chem B, 2001, 105: 10983–1099

    Article  Google Scholar 

  8. Duan Z H, Krasny R. An Ewald summation based multipole method. J Chem Phys, 2000, 113: 3492–3495

    Article  Google Scholar 

  9. Duan Z H, Krasny R. An adaptive treecode for computing nonbonded potential energy in classical molecular systems. J Comput Chem, 2001, 22: 184–195

    Article  Google Scholar 

  10. Ewald P P. Die berechnung optischer und elektrostatischer gitterpotentiale. Ann Phys, 1921, 369: 253–287

    Article  Google Scholar 

  11. French R H, Parsegian V A, Podgornik R, et al. Long range interactions in nanoscale science. Rev Mod Phys, 2010, 82: 1887–1944

    Article  Google Scholar 

  12. Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications. New York: Academic Press, 2002

    Google Scholar 

  13. Gan Z, Xu Z. Multiple-image treatment of induced charges in Monte Carlo simulations of electrolytes near a spherical dielectric interface. Phys Rev E, 2011, 84: 016705

    Article  Google Scholar 

  14. Geng W, Krasny R. A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules. J Comput Phys, 2013, 247: 62–78

    Article  MathSciNet  Google Scholar 

  15. Gibbon P, Speck R, Karmakar A, et al. Progress in mesh-free plasma simulation with parallel tree codes. Plasma Sci IEEE Trans, 2010, 38: 2367–2376

    Article  Google Scholar 

  16. Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput Phys, 1987, 73: 325–348

    Article  MATH  MathSciNet  Google Scholar 

  17. Greengard L, Rokhlin V. A new version of the Fast Multipole Method for the Laplace equation in three dimensions. Acta Numer, 1997, 6: 229–269

    Article  MathSciNet  Google Scholar 

  18. Grosberg A Y, Nguyen T T, Shklovskii B I. Colloquium: The physics of charge inversion in chemical and biological systems. Rev Mod Phys, 2002, 74: 329–345

    Article  Google Scholar 

  19. Hockney R W, Eastwood J W. Computer Simulation Using Particles. Boca Raton, FL: CRC Press, 1988

    Book  MATH  Google Scholar 

  20. Kabadshow I, Dachsel H. The error-controlled fast multipole method for open and periodic boundary conditions. In: Fast Methods for Long-Range Interactions in Complex Systems, vol. 6. Jülich: Forschungszentrum Jülich, 2011, 85–114

    Google Scholar 

  21. Kondrat S, Georgi N, Fedorov M V, et al. A superionic state in nano-porous double-layer capacitors: insights from monte carlo simulations. Phys Chem Chem Phys, 2011, 13: 11359–11366

    Article  Google Scholar 

  22. Lashuk I, Chandramowlishwaran A, Langston H, et al. A massively parallel adaptive fast-multipole method on heterogeneous architectures. Commun ACM, 2012, 55: 101–109

    Article  Google Scholar 

  23. Lau A W C, Lukatsky D B, Pincus P, et al. Charge fluctuations and counterion condensation. Phys Rev E, 2002, 65: 051502

    Article  Google Scholar 

  24. Li P, Johnston H, Krasny R. A Cartesian treecode for screened Coulomb interactions. J Comput Phys, 2009, 228: 3858–3868

    Article  MATH  MathSciNet  Google Scholar 

  25. Lindsay K, Krasny R. A particle method and adaptive treecode for vortex sheet motion in 3-D flow. J Comput Phys, 2001, 172: 879–907

    Article  MATH  MathSciNet  Google Scholar 

  26. Linse P. Simulation of charged colloids in solution. Adv Polym Sci, 2005, 185: 111–162

    Article  Google Scholar 

  27. Linse P. Electrostatics in the presence of spherical dielectric discontinuities. J Chem Phys, 2008, 128: 214505

    Article  Google Scholar 

  28. Lyubartsev A P, Tang J X, Janmey P A, et al. Electrostatically induced polyelectrolyte association of rodlike virus particles. Phys Rev Lett, 1998, 81: 5465–5468

    Article  Google Scholar 

  29. Manzanares J, Murphy W, Mafe S, et al. Numerical simulation of the nonequilibrium diffuse double layer in ionexchange membranes. J Phys Chem, 1993, 97: 8524–8530

    Article  Google Scholar 

  30. Marzouk Y M, Ghoniem A F. K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical n-body simulations. J Comp Phys, 2005, 207: 493–528

    Article  MATH  MathSciNet  Google Scholar 

  31. Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines. J Chem Phys, 1953, 21: 1087–1092

    Article  Google Scholar 

  32. Walker D A, Kowalczyk B, de la Cruz M O, et al. Electrostatics at the nanoscale. Nanoscale, 2011, 3: 1316–1344

    Article  Google Scholar 

  33. Winkel M, Speck R, Hübner H, et al. A massively parallel, multi-disciplinary Barnes-Hut tree code for extreme-scale N-body simulations. Comput Phys Comm, 2012, 183: 880–889

    Article  Google Scholar 

  34. Xu Z, Cai W. Fast analytical methods for macroscopic electrostatic models in biomolecular simulations. SIAM Rev, 2011, 53: 683–720

    Article  MATH  MathSciNet  Google Scholar 

  35. Xu Z, Cheng X, Yang H. Treecode-based generalized Born method. J Chem Phys, 2011, 134: 064107

    Article  Google Scholar 

  36. Xu Z, Liang Y, Xing X. Mellin transform and image charge method for dielectric sphere in an electrolyte. SIAM J Appl Math, 2013, 7: 1396–1415

    Article  MathSciNet  Google Scholar 

  37. Ying L. A pedestrian introduction to fast multipole methods. Sci China Math, 2012, 55: 1043–1051

    Article  MATH  MathSciNet  Google Scholar 

  38. Ying L, Biros G, Zorin D. A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J Comput Phys, 2004, 196: 591–626

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenLi Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Z., Xu, Z. Efficient implementation of the Barnes-Hut octree algorithm for Monte Carlo simulations of charged systems. Sci. China Math. 57, 1331–1340 (2014). https://doi.org/10.1007/s11425-014-4783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4783-5

Keywords

MSC(2010)

Navigation