Skip to main content
Log in

Consistency of kernel density estimators for causal processes

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Using the blocking techniques and m-dependent methods, the asymptotic behavior of kernel density estimators for a class of stationary processes, which includes some nonlinear time series models, is investigated. First, the pointwise and uniformly weak convergence rates of the deviation of kernel density estimator with respect to its mean (and the true density function) are derived. Secondly, the corresponding strong convergence rates are investigated. It is showed, under mild conditions on the kernel functions and bandwidths, that the optimal rates for the i.i.d. density models are also optimal for these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bickel P J, Rosenblatt M. On some global measures of the deviations of density function estimates. Ann Statist, 1973, 1: 1071–1095

    Article  MATH  MathSciNet  Google Scholar 

  2. Bosq D. Nonparametric Statistics for Stochastic Processes: Estimation and Prediction. New York: Springer, 1996

    Book  MATH  Google Scholar 

  3. Cai Z W. Strong consistency and rates for the probability density estimators for weakly dependent random variables. J Sys Sci Math Sci, 1990, 10: 360–370

    MATH  Google Scholar 

  4. delaPeña V, Giné E. Decoupling: From Dependence to Independence. New York: Springer, 1999

    Google Scholar 

  5. Dudley R M. A Course on Empirical Processes. In: Ecole d’Éte de Probabilites de Saint-Flour XII-1982. Lecture Notes in Math, vol. 1097. Berlin: Springer, 1984, 2–142

    Google Scholar 

  6. Einmahl U, Mason D M. Some universal results on the behavior of increments of partial sum. Ann Probab, 1996, 24: 1388–1407

    Article  MATH  MathSciNet  Google Scholar 

  7. Einmahl U, Mason D M. An empirical process approach to the uniform consistency of kernel-type function estimators. J Theoret Probab, 2000, 13: 1–37

    Article  MATH  MathSciNet  Google Scholar 

  8. Einmahl U, Mason D M. Uniform in bandwidth consistency of kernel-type function estimators. Ann Statist, 2005, 33: 1380–1403

    Article  MATH  MathSciNet  Google Scholar 

  9. Fan J Q, Yao Q. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer, 2003

    Book  Google Scholar 

  10. Födes A. Density estimation for dependent sample. Studia Sci Math Hungar, 1974, 9: 443–452

    MathSciNet  Google Scholar 

  11. Giné E, Guillou A. On consistency of kernel density estimators for randomly censored data: Rates holding uniformly over adaptive intervals. Ann Inst H Poincaré Probab Statist, 2001, 37: 503–522

    Article  MATH  Google Scholar 

  12. Giné E, Guillou A. Rates of strong consistency for multivariate kernel density estimators. Ann Inst H Poincaré Probab Statist, 2002, 38: 907–921

    Article  MATH  Google Scholar 

  13. Giné E, Koltchinskii V, Zinn J. Weighted uniform consistency of kernel density estimators. Ann Probab 2004, 32: 2570–2605

    Article  MATH  MathSciNet  Google Scholar 

  14. Giné E, Nickl R. Uniform limit theorems for wavelet density estimators. Ann Probab, 2009, 37: 1605–1646

    Article  MATH  MathSciNet  Google Scholar 

  15. Kallianpur G. Some Ramifications of Wiener’s Ideas on Nonlinear Prediction. In: Masani P, ed. Norbert Wiener, Collected Works, vol. 3. Cambridge: MIT Press, 1981, 402–424

    Google Scholar 

  16. Liebscher E. Strong convergence of sums of φ-mixing random variables. Math Methods Statist, 1995, 4: 216–229

    MATH  MathSciNet  Google Scholar 

  17. Liebscher E. Strong convergence of sums of α-mixing random variables with applications to density estimation. Stochastic Process Appl, 1996, 65: 69–80

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu W, Lin Z. Strong approximation for a class of stationary processes. Stochastic Process Appl, 2009, 119: 249–280

    Article  MATH  MathSciNet  Google Scholar 

  19. Machkouri M E. Kernel density estimation for stationary random fields. Arxiv:1109.2694, 2011

    Google Scholar 

  20. Montgomery-Smith S J. Comparison of sums of independent identically distributed random vectors. Probab Math Statist, 1993, 14: 281–285

    MATH  MathSciNet  Google Scholar 

  21. Nagaev S V. Large deviations of sums of independent random variables. Ann Probab, 1979, 7: 745–789

    Article  MATH  MathSciNet  Google Scholar 

  22. Nze P A, Rios R. Density estimation in the L norm for mixing processes (in French). C R Acad Sci Paris, 1995, 320: 1259–1262

    MATH  Google Scholar 

  23. Parzen E. On the estimation of a probability density function and the mode. Ann Math Statist, 1962, 33: 1065–1076

    Article  MATH  MathSciNet  Google Scholar 

  24. Peligrad M. Properties of uniform consistency of the kernel estimators of density and of regression functions under dependent assumptions. Stoch Stoch Reports, 1992, 40: 147–168

    Article  MATH  MathSciNet  Google Scholar 

  25. Priestley M B. Non-linear and Non-stationary Time Series Analysis. New York: Academic Press, 1988

    Google Scholar 

  26. Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann Math Statist, 1956, 27: 832–835

    Article  MATH  MathSciNet  Google Scholar 

  27. Roussas G G. Nonparametric estimation in mixing sequences of random variables. J Statist Plann Inference, 1988, 18: 135–149

    Article  MATH  MathSciNet  Google Scholar 

  28. Rüschendorf L. Consistency of estimators for multivariate density functions and for the mode. Sankhya, 1977, 39: 243–250

    MATH  Google Scholar 

  29. Sarda P, Vieu P. Empirical distribution function for mixing random variables. Statistics, 1989, 20: 559–571

    Article  MATH  MathSciNet  Google Scholar 

  30. Silverman B W. Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann Statist, 1978, 6: 177–184

    Article  MATH  MathSciNet  Google Scholar 

  31. Stute W. The oscillation behavior of empirical processes. Ann Probab, 1982, 10: 86–107

    Article  MATH  MathSciNet  Google Scholar 

  32. Stute W. A law of the logarithm for kernel density estimators. Ann Probab, 1982, 10: 414–422

    Article  MATH  MathSciNet  Google Scholar 

  33. Stute W. The oscillation behavior of empirical processes: The multivariate case. Ann Probab, 1984, 12: 361–379

    Article  MATH  MathSciNet  Google Scholar 

  34. Tong H. Non-linear Time Series: A Dynamical System Approach. Oxford: Oxford University Press, 1990

    MATH  Google Scholar 

  35. Wiener N. Nonlinear Problems in Random Theory. Cambridge: MIT Press, 1958

    MATH  Google Scholar 

  36. Withers C S. Conditions for linear process to be strongly mixing. Z Wahrsch Verw Gebiete, 1981, 57: 477–480

    Article  MATH  MathSciNet  Google Scholar 

  37. Woodroofe M. On the maximum deviation of the sample density. Ann Math Statist, 1967, 38: 475–481

    Article  MATH  MathSciNet  Google Scholar 

  38. Woodroofe M. Discussion of “Density estimates and Markov sequences” by M. Rosenblatt. Cambridge: Cambridge Univ Press, 1970

    Google Scholar 

  39. Wu W B. Strong invariance principles for dependent random variables. Ann Probab, 2007, 35: 2294–2320

    Article  MATH  MathSciNet  Google Scholar 

  40. Wu W B, Huang Y, Huang Y. Kernel estimation for time series: An asymptotic theory. Stochastic Process Appl, 2010, 120: 2412–2431

    Article  MATH  MathSciNet  Google Scholar 

  41. Yakowitz S. nonparametric density estimation, prediction and regression for Markov sequences. J Amer Statist Assoc, 1985, 80: 215–221

    Article  MATH  MathSciNet  Google Scholar 

  42. Yu B. Density estimation in the L norm for dependent data with applications to the Gibbs sampler. Ann Statist, 1993, 21: 711–735

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YueXu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Z., Zhao, Y. Consistency of kernel density estimators for causal processes. Sci. China Math. 57, 1083–1108 (2014). https://doi.org/10.1007/s11425-014-4774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4774-6

Keywords

MSC(2010)

Navigation