Skip to main content
Log in

A Barban-Davenport-Halberstam theorem for integers with fixed number of prime divisors

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the distribution of integers with a given number prime divisors over arithmetic progressions, via using the large-sieve inequality, Huxley-Hooley contour and the zero-density estimate, and present a Barban-Davenport-Halberstam type theorem for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barban M B. The large sieve and its applications in the theory of numbers. Russian Math Surveys, 1966, 21: 49–103

    Article  MATH  MathSciNet  Google Scholar 

  2. Blomer V. The average value of divisor sums in arithmetic progressions. Q J Math, 2008, 59: 275–286

    Article  MATH  MathSciNet  Google Scholar 

  3. Davenport H. Multiplicative Number Theory. New York: Springer-Verlag, 1980

    MATH  Google Scholar 

  4. Davenport H, Halberstam H. Primes in arithmetic progressions. Michigan Math J, 1966, 13: 485–489

    Article  MATH  MathSciNet  Google Scholar 

  5. Friedlander J B, Goldston D A. Variance of distribution of primes in residue classes. Q J Math, 1996, 47: 313–336

    Article  MATH  MathSciNet  Google Scholar 

  6. Gallagher P X. The large sieve. Mathematika, 1967, 14: 14–20

    MATH  MathSciNet  Google Scholar 

  7. Hooley C. On the Barban-Davenport-Halberstam theorem II. J London Math Soc, 1975, 9: 625–636

    MATH  MathSciNet  Google Scholar 

  8. Karatsuba A A. Basic Analytic Number Theory (Translated from the second (1983) edition by M B Nathanson). Berlin: Springer-Verlag, 1993

    Google Scholar 

  9. Lü G. The average value of Fourier coefficients of cusp forms in arithmetic progressions. J Number Theory, 2009, 129: 488–494

    MATH  MathSciNet  Google Scholar 

  10. Montgomery H L. Primes in arithmetic progressions. Michigan Math J, 1970, 17: 33–39

    MATH  MathSciNet  Google Scholar 

  11. Pan C D, Pan C B. Elements of Analytic Number Theory. Beijing: Science Press, 1999

    Google Scholar 

  12. Ramachandra R. Some problems of analytic number theory. Acta Arith, 1976, 31: 313–324

    MATH  MathSciNet  Google Scholar 

  13. Sathe L G. On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors. J Indian Math Soc, 1953, 17: 63–141

    MATH  MathSciNet  Google Scholar 

  14. Selberg A. Note on a paper by L G Sathe. J Indian Math Soc, 1954, 18: 83–87

    MATH  MathSciNet  Google Scholar 

  15. Stephan B, Zhao L Y. Bombieri-Vinogradov type theorems for sparse sets of moduli. Acta Arith, 2006, 125: 187–201

    MATH  MathSciNet  Google Scholar 

  16. Vaughan R C. On a variance associated with the distribution of primes in arithmetic progressions. Proc London Math Soc, 2001, 82: 533–553

    MATH  MathSciNet  Google Scholar 

  17. Wolke D, Zhan T. On the distribution of integers with a fixed number of prime factors. Math Z, 1993, 213: 133–147

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiLi Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, W. A Barban-Davenport-Halberstam theorem for integers with fixed number of prime divisors. Sci. China Math. 57, 2103–2110 (2014). https://doi.org/10.1007/s11425-013-4748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4748-0

Keywords

MSC(2010)

Navigation