Skip to main content
Log in

Application of auxiliary space preconditioning in field-scale reservoir simulation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study a class of preconditioners to solve large-scale linear systems arising from fully implicit reservoir simulation. These methods are discussed in the framework of the auxiliary space preconditioning method for generality. Unlike in the case of classical algebraic preconditioning methods, we take several analytical and physical considerations into account. In addition, we choose appropriate auxiliary problems to design the robust solvers herein. More importantly, our methods are user-friendly and general enough to be easily ported to existing petroleum reservoir simulators. We test the efficiency and robustness of the proposed method by applying them to a couple of benchmark problems and real-world reservoir problems. The numerical results show that our methods are both efficient and robust for large reservoir models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Shaalan T, Klie H, Dogru A, et al. Studies of robust two stage preconditioners for the solution of fully implicit multiphase flow problems. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 2009, 1–12

    Google Scholar 

  2. Appleyard J, Cheshire I M. Nested factorization. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 1983, 315–324

    Google Scholar 

  3. Appleyard J, Cheshire I, Pollard R. Special techniques for fully implicit simulators. In: Proceedings of the European Symposium on Enhanced Oil Recovery. Harwell: Atomic Energy Research Establishment, Computer Science and Systems Division, 1981, 395–408

    Google Scholar 

  4. Bank R E, Chan T F, Coughran Jr W M, et al. The alternate-block-factorization procedure for systems of partial differential equations. BIT, 1989, 29: 938–954

    Article  MATH  MathSciNet  Google Scholar 

  5. Behie A, Vinsome P. Block iterative methods for fully implicit reservoir simulation. Old SPE J, 1982, 22: 658–668

    Google Scholar 

  6. Brandt A, McCormick S, Ruge J. Algebraic multigrid (AMG) for sparse matrix equations. In: Sparsity and its Applications. Cambridge: Cambridge University Press, 1985, 257–284

    Google Scholar 

  7. Buleev N I. A numerical method for the solution of two-dimensional and three-dimensional equations of diffusion. Mat Sb N S, 1960, 51: 227–238

    Google Scholar 

  8. Chen Z, Huan G, Ma Y. Computational Methods for Multiphase Flows in Porous Media. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2006

    Book  MATH  Google Scholar 

  9. Christie M, Blunt M. Tenth SPE comparative solution project: A comparison of upscaling techniques. SPE Reservoir Evaluation Eng, 2001, 4: 308–317

    Article  Google Scholar 

  10. Concus P, Golub G, Meurant G. Block preconditioning for the conjugate gradient method. SIAM J Sci Statist Comput, 1985, 6: 220–252

    Article  MATH  MathSciNet  Google Scholar 

  11. Douglas Jr J, Peaceman D W, Rachford D. A method for calculating multi-dimensional displacement. Trans Amer Inst Min Metallurgical Petroleum Eng, 1959, 216: 297–306

    Google Scholar 

  12. Falgout R. An Introduction to Algebraic Multigrid. Comput Sci Eng, 2006, 8: 24–33

    Article  Google Scholar 

  13. Grasedyck L, Wang L, Xu J. A nearly optimal multigrid method for general unstructured grids. Technical report, preprint, 2012

    Google Scholar 

  14. Gustavson F. Finding the block lower triangular form of a sparse matrix. In: Sparse matrix computations. New York: Academic Press, 1976, 275–289

    Google Scholar 

  15. Hiptmair R, Xu J. Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J Numer Anal, 2007, 45: 2483–2509

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu X, Liu W, Qin G, et al. Development of a fast auxiliary subspace preconditioner for numerical reservoir simulators. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 2011, 1–10

    Google Scholar 

  17. Hu X, Wu S, Wu X H, et al. Combined preconditioning with applications in reservoir simulation. Multiscale Model Simul, 2013, arXiv:1205.6113v3

    Google Scholar 

  18. Huyakorn P, Nilkuha K. Solution of transient transport equation using an upstream finite element scheme. Appl Math Model, 1979, 3: 7–17

    Article  MATH  Google Scholar 

  19. Kim H, Xu J, Zikatanov L. A multigrid method based on graph matching for convection-diffusion equations. Numer Linear Algebra Appl, 2003, 10: 181–195

    Article  MATH  MathSciNet  Google Scholar 

  20. Kim H, Xu J, Zikatanov L. Uniformly convergent multigrid methods for convection-diffusion problems without any constraint on coarse grids. Adv Comput Math, 2004, 20: 385–399

    Article  MATH  MathSciNet  Google Scholar 

  21. Klie H. Krylovsecant methods for solving large-scale systems of coupled nonlinear parabolic equations. PhD thesis. Houston, TX: Rice University, 1997

    Google Scholar 

  22. Lacroix S, Vassilevski Y, Wheeler J, et al. Iterative solution methods for modeling multiphase flow in porous media fully implicitly. SIAM J Sci Comput, 2003, 25: 905–926

    Article  MATH  MathSciNet  Google Scholar 

  23. Lacroix S, Vassilevski Y V, Wheeler M F. Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numer Linear Algebra Appl, 2001, 8: 537–549

    Article  MATH  MathSciNet  Google Scholar 

  24. Meyerink J. Iterative methods for the solution of linear equations based on incomplete block factorization of the matrix. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 1983, 1–8

    Google Scholar 

  25. Mishev I, Shaw J, Lu P. Numerical experiments with AMG solver in reservoir simulation. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 2011, 1–8

    Google Scholar 

  26. Nepomnyaschikh S V. Decomposition and fictitious domains methods for elliptic boundary value problems. In: Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations. Philadelphia, PA: SIAM, 1992, 62–72

    Google Scholar 

  27. Odeh A S. Comparison of solutions to a three-dimensional black-oil reservoir simulation problem. J Petroleum Technol, 1981, 33: 13–25

    Article  Google Scholar 

  28. Peaceman D W. Reproseutation of a horizontal well in numerical reservoir simulation. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 1991, 7–16

    Google Scholar 

  29. Ruge J W, Stüben K. Algebraic multigrid. In: Multigrid methods, Frontiers Appl Math, vol. 3. Philadelphia, PA: SIAM, 1987, 73–130

    Chapter  Google Scholar 

  30. Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Statist Comput, 1986, 7: 856–869

    Article  MATH  MathSciNet  Google Scholar 

  31. Scheichl R, Masson R, Wendebourg J. Decoupling and block preconditioning for sedimentary basin simulations. Comput Geosci, 2003, 7: 295–318

    Article  MATH  MathSciNet  Google Scholar 

  32. Stüben K. An introduction to algebraic multigrid. In: Trottenberg U, Oosterlee C W, Schüller A, eds. Multigrid. London: Academic Press, 2001, 413–532

    Google Scholar 

  33. Stüben K. Solving Reservoir Simulation Equations. In: 9th International Forum on Reservoir Simulation. Abu Dhabi: UAE, 2007, 1–53

    Google Scholar 

  34. Stüben K, Clees T, Klie H, et al. Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 2007, 1–11

    Google Scholar 

  35. Tarjan R E. Depth-first search and linear graph algorithms. SIAM J Comput, 1972, 1: 146–160

    Article  MATH  MathSciNet  Google Scholar 

  36. Varga R S. Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-Hall Inc., 1962

    Google Scholar 

  37. Wallis J. Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 1983, 1–10

    Google Scholar 

  38. Wallis J, Kendall R, Little T. Constrained residual acceleration of conjugate residual methods. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 1985, 1–14

    Google Scholar 

  39. Watts J, Shaw J. A new method for solving the implicit reservoir simulation matrix equation. In: SPE Reservoir Simulation Symposium. Oklahoma: Society of Petroleum Engineers, 2005, 1–7

    Google Scholar 

  40. Xu J. Iterative methods by space decomposition and subspace correction. SIAM Rev, 1992, 34: 581–613

    Article  MATH  MathSciNet  Google Scholar 

  41. Xu J. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing, 1996, 56: 215–235

    Article  MATH  MathSciNet  Google Scholar 

  42. Xu J. Fast Poisson-based solvers for linear and nonlinear PDEs. In: Bhatia R, ed. Proceedings of the International Congress of Mathematics, vol. 4. Singapore: World Scientific, 2010, 2886–2912

    Google Scholar 

  43. Zhang S, Xu J. Optimal solvers for fourth-order PDEs discretized on unstructured grids. SIAM J Numer Anal, 2012, submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinChao Xu.

Additional information

Dedicated to Professor Shi Zhong-Ci on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Xu, J. & Zhang, C. Application of auxiliary space preconditioning in field-scale reservoir simulation. Sci. China Math. 56, 2737–2751 (2013). https://doi.org/10.1007/s11425-013-4737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4737-3

Keywords

MSC(2010)

Navigation