Skip to main content
Log in

Central limit theorems for power variation of Gaussian integral processes with jumps

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper presents limit theorems for realized power variation of processes of the form X t = ∫ t0 φ s dG s + ξ t as the sampling frequency within a fixed interval increases to infinity. Here G is a Gaussian process with stationary increments, ξ is a purely non-Gaussian Lévy process independent from G, and φ is a stochastic process ensuring that the integral is well defined as a pathwise Riemann-Stieltjes integral. We obtain the central limit theorems for the case that both the continuous term and the jump term are presented simultaneously in the law of large numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aït-Sahalia Y, Jacod J. Estimating the degree of activity of jumps in high frequency data. Ann Statist, 2009, 37: 2202–2244

    Article  MATH  MathSciNet  Google Scholar 

  2. Aït-Sahalia Y, Jacod J. Testing for jumps in a discretely observed process. Ann Statist, 2009, 37: 184–222

    Article  MATH  MathSciNet  Google Scholar 

  3. Aït-Sahalia Y, Jacod J. Is Brownian motion necessary to model high-frequency data? Ann Statist, 2010, 38: 3093–3128

    Article  MATH  MathSciNet  Google Scholar 

  4. Barndorff-Nielsen O E, Corcuera J M, Podolskij M. Power variation for Gaussian processes with stationary increments. Stoch Proc Appl, 2009, 119: 1845–1865

    Article  MATH  MathSciNet  Google Scholar 

  5. Barndorff-Nielsen O E, Corcuera J M, Podolskij M, et al. Bipower variation for Gaussian processes with stationary increments. J Appl Probab, 2009, 46: 132–150

    Article  MATH  MathSciNet  Google Scholar 

  6. Barndorff-Nielsen O E, Shephard N. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J Roy Statist Soc Ser B, 2002, 64: 253–280

    Article  MATH  MathSciNet  Google Scholar 

  7. Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps (with discussion). J Financial Econometrics, 2004, 2: 1–48

    Article  Google Scholar 

  8. Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower variation. J Financial Econometrics, 2006, 4: 1–30

    Article  MathSciNet  Google Scholar 

  9. Beran J. Statistics for Long-Memory Processes. New York: Chapman & Hall, 1994

    MATH  Google Scholar 

  10. Biagini F, Hu Y Z, Øsendal B, et al. Stochastic Calculus for Fractional Brownian Motion and Applications. New York: Springer-Verlag, 2008

    Book  MATH  Google Scholar 

  11. Cheridito P. Arbitrage in fractional Brownian motion models. Finance Stoch, 2003, 7: 533–553

    Article  MATH  MathSciNet  Google Scholar 

  12. Corcuera J M, Nualart D, Woerner J H C. Power variation of some integral fractional processes. Bernoulli, 2006, 12: 713–735

    Article  MATH  MathSciNet  Google Scholar 

  13. Corsi F, Pirino D, Renò R. Threshold bipower variation and the impact of jumps on volatility forecasting. J Econometrics, 2010, 159: 276–288

    Article  MathSciNet  Google Scholar 

  14. Delbaen F, Schachermayer W. A general version of the fundamental theorem of asset pricing. Math Ann, 1994, 300: 463–520

    Article  MATH  MathSciNet  Google Scholar 

  15. Doukhan P, Oppenheim G, Taqqu M S. Theory and Applications of Long-Range Dependence. Boston: Birkhäuser, 2003

    MATH  Google Scholar 

  16. Guasoni P. No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math Finance, 2006, 16: 569–582

    Article  MATH  MathSciNet  Google Scholar 

  17. Gubner J A. Probability and Random Processes for Electrical and Computer Engineers. Cambridge: Cambridge University Press, 2006

    Book  MATH  Google Scholar 

  18. Guyon X, Leon J. Convergence en loi des H-variations d’un processus gaussien stationnaire sur R. Ann Inst H Poincaré Probab Statist, 1989, 25: 265–282

    MATH  MathSciNet  Google Scholar 

  19. Hu Y Z, Øsendal B. Fractional white noise calculus and applications to finance. Infin Dimens Anal Quantum Probab Relat Top, 2003, 6: 1–32

    Article  MATH  Google Scholar 

  20. Jacod J. Asymptotic properties of power variations of Lévy processes. ESAIM-Probab Stat, 2007, 11: 173–196

    Article  MATH  MathSciNet  Google Scholar 

  21. Jacod J. Asymptotic properties of realized power variations and related functionals of semimartingales. Stoch Proc Appl, 2008, 118: 517–559

    Article  MATH  MathSciNet  Google Scholar 

  22. Jacod J, Protter P. Asymptotic error distributions for the Euler method for stochastic differential equations. Ann Probab, 1998, 26: 267–307

    Article  MATH  MathSciNet  Google Scholar 

  23. Jacod J, Shiryaev A N. Limit Theorems for Stochastic Processes. Berlin: Springer-Verlag, 2003

    Book  MATH  Google Scholar 

  24. Jing B Y, Kong X B, Liu Z. Modeling high-frequency financial data by pure jump processes. Ann Statist, 2012, 40: 759–784

    Article  MATH  MathSciNet  Google Scholar 

  25. Jing B Y, Kong X B, Liu Z, et al. On the jump activity index for semimartingales. J Econometrics, 2012, 166: 213–223

    Article  MathSciNet  Google Scholar 

  26. Kou S G. A jump-diffusion model for option pricing. Management Science, 2002, 48: 1086–1101

    Article  MATH  Google Scholar 

  27. Lépingle D. La variation d’ordre p des semimartingales. Probab Theory Related Fields, 1976, 36: 285–316

    Google Scholar 

  28. Liu G Y, Zhang X S. Asymptotic properties of power variations of fractional Brownian motion with jumps (in Chinese). Sci Sin Math, 2011, 41: 81–94

    Article  Google Scholar 

  29. Liu G Y, Zhang X S. Power variation of fractional integral processes with jumps. Statist Probab Lett, 2011, 81: 962–972

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu G Y, Zhang X S. Power variation of Gaussian integral processes with jumps (in Chinese). Chinese Ann Math Ser A, 2012, 33: 247–260

    Article  MATH  MathSciNet  Google Scholar 

  31. Mancini C. Estimation of the characteristics of the jumps of a general Poisson-diffusion model. Scand Actuar J, 2004, 31: 42–52

    Article  MathSciNet  Google Scholar 

  32. Mancini C. Non-parametric threshold estimation for models with stochastic diffusion coefficients and jumps. Scand J Statist, 2009, 36: 270–296

    Article  MATH  MathSciNet  Google Scholar 

  33. Vetter M. Limit theorems for bipower variation of semimartingales. Stoch Proc Appl, 2010, 120: 22–38

    Article  MATH  MathSciNet  Google Scholar 

  34. Woerner J H C. Variational sums and power variation: A unifying approach to model selection and estimation in semimartingale models. Statist Decisions, 2003, 21: 47–68

    Article  MATH  MathSciNet  Google Scholar 

  35. Woerner J H C. Power and multipower variation: Inference for high-frequency data. In: Shiryaev A N, Grossinho M R, Esquivel M, et al., eds. Stochastic Finance. Berlin: Springer-Verlag, 2006, 343–364

    Chapter  Google Scholar 

  36. Young L C. An inequality of the Hölder type connected with Stieltjes integration. Acta Math, 1936, 67: 251–282

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangYing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Tang, J. & Zhang, X. Central limit theorems for power variation of Gaussian integral processes with jumps. Sci. China Math. 57, 1671–1685 (2014). https://doi.org/10.1007/s11425-013-4736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4736-4

Keywords

MSC(2010)

Navigation