Skip to main content
Log in

Theorems of Erdős-Ko-Rado type in geometrical settings

  • Reviews
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The original Erdős-Ko-Rado problem has inspired much research. It started as a study on sets of pairwise intersecting k-subsets in an n-set, then it gave rise to research on sets of pairwise non-trivially intersecting k-dimensional vector spaces in the vector space V (n, q) of dimension n over the finite field of order q, and then research on sets of pairwise non-trivially intersecting generators and planes in finite classical polar spaces. We summarize the main results on the Erdős-Ko-Rado problem in these three settings, mention the Erdős-Ko-Rado problem in other related settings, and mention open problems for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blokhuis A, Brouwer A E, Chowdhury A, et al. A Hilton-Milner theorem for vector spaces. Electron J Combin, 2010, 17: 71

    MathSciNet  Google Scholar 

  2. Blokhuis A, Brouwer A E, Szőnyi T. On the chromatic number of q-Kneser graphs. Des Codes Cryptogr, 2012, 65: 187–197

    Article  MathSciNet  MATH  Google Scholar 

  3. Blokhuis A, Brouwer A E, Szőnyi T, et al. On q-analogues and stability theorems. J Geom, 2011, 101: 31–50

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose R C, Shimamoto T. Classification and analysis of partially balanced incomplete block designs with two associate classes. J Amer Statist Assoc, 1952, 47: 151–184

    Article  MathSciNet  MATH  Google Scholar 

  5. Brouwer A E, Cohen A M, Neumaier A. Distance-regular graphs. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 18. Berlin: Springer-Verlag, 1989

    Google Scholar 

  6. Brouwer A E, Godsil C D, Koolen J H, et al. Width and dual width of subsets in polynomial association schemes. J Combin Theory Ser A, 2003, 102: 255–271

    Article  MathSciNet  MATH  Google Scholar 

  7. Brouwer A E, Hemmeter J. A new family of distance-regular graphs and the {0, 1, 2}-cliques in dual polar graphs. European J Combin, 1992, 13: 71–79

    Article  MathSciNet  MATH  Google Scholar 

  8. Cameron P J, Ku C Y. Intersecting families of permutations. European J Combin, 2003, 24: 881–890

    Article  MathSciNet  MATH  Google Scholar 

  9. Chowdhury A, Godsil C, Royle G. Colouring lines in projective space. J Combin Theory Ser A, 2006, 113: 39–52

    Article  MathSciNet  MATH  Google Scholar 

  10. Chowdhury A, Patkós B. Shadows and intersections in vector spaces. J Combin Theory Ser A, 2010, 117: 1095–1106

    Article  MathSciNet  MATH  Google Scholar 

  11. De Boeck M. The largest Erdős-Ko-Rado sets of planes in finite projective and finite classical polar spaces. In press, 2012

    Google Scholar 

  12. Delsarte P. Association schemes and t-designs in regular semilattices. J Combin Theory Ser A, 1976, 20: 230–243

    Article  MathSciNet  MATH  Google Scholar 

  13. Deza M, Frankl P. On the maximum number of permutations with given maximal or minimal distance. J Combin Theory Ser A, 1977, 22: 352–360

    Article  MathSciNet  MATH  Google Scholar 

  14. Ellis D. A proof of the Cameron-Ku conjecture. J Lond Math Soc (2), 2012, 85: 165–190

    Article  MathSciNet  MATH  Google Scholar 

  15. Ellis D. Setwise intersecting families of permutations. J Combin Theory Ser A, 2012, 119: 825–849

    Article  MathSciNet  MATH  Google Scholar 

  16. Ellis D, Friedgut E, Pilpel H. Intersecting families of permutations. J Amer Math Soc, 2011, 24: 649–682

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdős P, Ko C, Rado R. Intersection theorems for systems of finite sets. Quart J Math Oxford Ser (2), 1961, 12: 313–320

    Article  MathSciNet  Google Scholar 

  18. Erdős P L, Székely L A. Erdős-Ko-Rado theorems of higher order. In: Numbers, Information and Complexity. New York: Springer-Verlag, 2000, 117–124

    Chapter  Google Scholar 

  19. Frankl P. On Sperner families satisfying an additional condition. J Combin Theory Ser A, 1976, 20: 1–11

    Article  MathSciNet  MATH  Google Scholar 

  20. Frankl P, Wilson R M. The Erdős-Ko-Rado theorem for vector spaces. J Combin Theory Ser A, 1986, 43: 228–236

    Article  MathSciNet  MATH  Google Scholar 

  21. Godsil C, Meagher K. A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations. European J Combin, 2009, 30: 404–414

    Article  MathSciNet  MATH  Google Scholar 

  22. Godsil C D, Newman M W. Eigenvalue bounds for independent sets. J Combin Theory Ser B, 2008, 98: 721–734

    Article  MathSciNet  MATH  Google Scholar 

  23. Greene C, Kleitman D J. Proof techniques in the theory of finite sets. In: Studies in combinatorics MAA Studies in Mathematics, vol. 17. Washington, DC: Math Assoc America, 1978, 22–79

    Google Scholar 

  24. Hirschfeld J W P, Thas J A. General Galois Geometries. New York: Clarendon Press, 1991

    MATH  Google Scholar 

  25. Hsieh W N. Intersection systems for systems of finite vector spaces. Discrete Math, 1975, 12: 1–16

    Article  MathSciNet  MATH  Google Scholar 

  26. Hilton A J W, Milner E C. Some intersection theorems for systems of finite sets. Quart J Math Oxford Ser (2), 1967, 18: 369–384

    Article  MathSciNet  MATH  Google Scholar 

  27. Hoffman A J. On eigenvalues and colorings of graphs. In: Graph Theory and its Applications. New York: Academic Press, 1970, 79–91

    Google Scholar 

  28. Ihringer F, Metsch K. On the maximal Size of Erdős-Ko-Rado Sets in H(2d + 1, q 2). Des Codes Cryptogr, doi: 10.1007/s10623-012-9765-4

  29. Ku C Y, Wong T W. Intersecting families in the alternating group and direct product of symmetric groups. Electron J Combin, 2007, 14: R25

    MathSciNet  Google Scholar 

  30. Larose B, Malvenuto C. Stable sets of maximal size in Kneser-type graphs. European J Combin, 2004, 25: 657–673

    Article  MathSciNet  MATH  Google Scholar 

  31. MathSciNet. American Mathematical Society. http://www.ams.org/mathscinet/

  32. Meagher K, Moura L. Erdős-Ko-Rado theorems for uniform set-partition systems. Electron J Combin, 2005, 12: R40

    MathSciNet  Google Scholar 

  33. Meagher K, Purdy A. An Erdős-Ko-Rado theorem for multisets. Electron J Combin, 2011, 18: 220

    MathSciNet  Google Scholar 

  34. Meagher K, Spiga P. An Erdős-Ko-Rado theorem for the derangement graph of PGL(2, q) acting on the projective line. J Combin Theory Ser A, 2011, 118: 532–544

    Article  MathSciNet  MATH  Google Scholar 

  35. Mussche T. Extremal Combinatorics in Generalized Kneser Graphs. Eindhoven: Technische Universiteit Eindhoven, 2009

    Google Scholar 

  36. Newman M. Independent Sets and Eigenspaces. PhD Thesis. Waterloo: University of Waterloo, 2004

    Google Scholar 

  37. Payne S E, Thas J A. Finite Generalized Quadrangles, 2nd ed. In: EMS Series of Lectures in Mathematics. Zürich: European Math Soc, 2009

  38. Pepe V, Storme L, Vanhove F. Theorems of Erdős-Ko-Rado-type in polar spaces. J Combin Theory Ser A, 2011, 118: 1291–1312

    Article  MathSciNet  MATH  Google Scholar 

  39. Rands B M I. An extension of the Erdős, Ko, Rado Theorem to t-designs. J Combin Theory Ser A, 1982, 32: 391–395

    Article  MathSciNet  MATH  Google Scholar 

  40. Stanton D. Some Erdős-Ko-Rado theorems for Chevalley groups. SIAM J Algebraic Discrete Methods, 1980, 1: 160–163

    Article  MathSciNet  MATH  Google Scholar 

  41. Tanaka H. Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J Combin Theory Ser A, 2006, 113: 903–910

    Article  MathSciNet  MATH  Google Scholar 

  42. Tanaka H. The Erdős-Ko-Rado theorem for twisted Grassmann graphs. Combinatorica, 2012, 32: 735–740

    Article  MathSciNet  Google Scholar 

  43. Wilson R M. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica, 1984, 4: 247–257

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten De Boeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Boeck, M., Storme, L. Theorems of Erdős-Ko-Rado type in geometrical settings. Sci. China Math. 56, 1333–1348 (2013). https://doi.org/10.1007/s11425-013-4676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4676-z

Keywords

MSC(2010)

Navigation