Abstract
This paper has two aims. The first is to give a description of irreducible tempered representations of classical p-adic groups which follows naturally the classification of irreducible square integrable representations modulo cuspidal data obtained by Moeglin and the author of this article (2002). The second aim of the paper is to give a description of an invariant (partially defined function) of irreducible square integrable representation of a classical p-adic group (defined by Moeglin using embeddings) in terms of subquotients of Jacquet modules. As an application, we describe behavior of partially defined function in one construction of square integrable representations of a bigger group from such representations of a smaller group (which is related to deformation of Jordan blocks of representations).
This is a preview of subscription content, access via your institution.
References
Arthur J. The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups. Preprint, http://www.claymath.org/cw/arthur/pdf/Book.pdf
Ban D. Parabolic induction and Jacquet modules of representations of O(2n, F). Glas Mat, 1999, 34: 147–185
Ban D, Jantzen C. Degenerate principal series for even-orthogonal groups. Represent Theory, 2003, 7: 440–80
Bernstein J. Draft of: Representations of p-adic groups. Preprint
Bernstein J, rédigé par Deligne P. Le “centre” de Bernstein. Paris: Hermann, 1984
Bernstein J, Zelevinsky A V. Induced representations of reductive p-adic groups I. Ann Sci École Norm Sup, 1977, 10: 441–472
Casselman W. Introduction to the theory of admissible representations of p-adic reductive groups. Preprint, http://www.math.ubc.ca/?cass/research/pdf/p-adic-book.pdf
Goldberg D. Reducibility of induced representations for Sp(2n) and SO(n). Amer J Math, 1994, 116: 1101–1151
Hanzer M. The generalized injectivity conjecture for the classical p-adic groups. Int Math Res Not, 2010, 2010: 195–237
Herb R. Elliptic representations for Sp(2n) and SO(n). Pacific J Math, 1993, 161: 347–358
Jantzen C. Degenerate principal series for symplectic and odd-orthogonal groups. Mem Amer Math Soc, 1996, 590: 1–100
Jantzen C. Tempered representations for classical p-adic groups. Preprint
Moeglin C. Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité. J Eur Math Soc, 2002, 4: 143–200
Moeglin C. Points de réductibilité pour les induites de cuspidales. J Algebra, 2003, 268: 81–117
Moeglin C. Classification et Changement de base pour les séries discrètes des groupes unitaires p-adiques. Pacific J Math, 2007, 233: 159–204
Moeglin C. Multiplicité 1 dans les paquets d’Arthur aux places p-adiques. In: On Certain L-functions, vol. 13. Providence, RI: Amer Math Soc, 2011, 333–374
Moeglin C, Tadić M. Construction of discrete series for classical p-adic groups. J Amer Math Soc, 2002, 15: 715–786
Moeglin C, Vignéras M F, Waldspurger J L. Correspondances de Howe sur un corps p-adique. In: Lecture Notes in Mathematics, vol. 1291. Berlin: Springer-Verlag, 1987
Moeglin C, Waldspurger J L. Sur le transfert des traces tordues d’un group linéaire à un groupe classique p-adique. Selecta Math, 2006, 12: 433–516
Muić G. On generic irreducible representations of Sp(n, F) and SO(2n+ 1, F). Glas Mat, 1998, 33: 19–31
Muić G. A proof of Casselman-Shahidi’s conjecture for quasi-split classical groups. Canad Math Bull, 2001, 44: 298–312
Muić G. Composition series of generalized principal series; the case of strongly positive discrete series. Israel J Math, 2004, 149: 157–202
Muić G. Reducibility of Generalized Principal Series. Canad J Math, 2005, 57: 616–647
Rodier F. Whittaker models for admissible representations. Proc Sympos Pure Math, 1983, 26: 425–430
Shahidi F. A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups. Ann Math, 1990, 132: 273–330
Shahidi F. Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math J, 1992, 66: 1–41
Silberger A. Special representations of reductive p-adic groups are not integrable. Ann Math, 1980, 111: 571–587
Tadić M. Geometry of dual spaces of reductive groups (non-archimedean case). J Anal Math, 1988, 51: 139–181
Tadić M. Structure arising from induction and Jacquet modules of representations of classical p-adic groups. J Algebra, 1995, 177: 1–33
Tadić M. On reducibility of parabolic induction. Israel J Math, 1998, 107: 29–91
Tadić M. Square integrable representations of classical p-adic groups corresponding to segments. Represent Theory, 1999, 3: 58–89
Tadić M. On reducibility and unitarizability for classical p-adic groups, some general results. Canad J Math, 2009, 61: 427–450
Tadić M. On invariants of discrete series representations of classical p-adic groups, Manuscripta Math, 2011, 136: 417–435
Tadić M. On interactions between harmonic analysis and the theory of automorphic forms. In: Automorphic Representations and L-functions. Tata Institute of Fundamental Research. New Delhi: Hindustan Book Agency, 2013, 591–650
Waldspurger J L. La formule de Plancherel pour les groupes p-adiques. J Inst Math Jussieu, 2003, 2: 235–333
Zelevinsky A V. Induced representations of reductive p-adic groups II: On irreducible representations of GL(n). Ann Sci École Norm Sup, 1980, 13: 165–210
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tadić, M. On tempered and square integrable representations of classical p-adic groups. Sci. China Math. 56, 2273–2313 (2013). https://doi.org/10.1007/s11425-013-4667-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11425-013-4667-0
Keywords
- non-archimedean local fields
- classical groups
- square integrable representations
- tempered representations
MSC(2010)
- 22E50
- 22E55
- 11F70
- 11S37