Skip to main content
Log in

Lower bounds on the minimum distance in Hermitian one-point differential codes

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Korchmáros and Nagy [Hermitian codes from higher degree places. J Pure Appl Algebra, doi: 10. 1016/j.jpaa.2013.04.002, 2013] computed the Weierstrass gap sequence G(P) of the Hermitian function field

at any place P of degree 3, and obtained an explicit formula of the Matthews-Michel lower bound on the minimum distance in the associated differential Hermitian code C Ω(D, mP) where the divisor D is, as usual, the sum of all but one 1-degree \(\mathbb{F}_{q^2 }\)-rational places of

and m is a positive integer. For plenty of values of m depending on q, this provided improvements on the designed minimum distance of C Ω(D, mP). Further improvements from G(P) were obtained by Korchmáros and Nagy relying on algebraic geometry. Here slightly weaker improvements are obtained from G(P) with the usual function-field method depending on linear series, Riemann-Roch theorem and Weierstrass semigroups. We also survey the known results on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballico E, Ravagnani A. On Goppa codes on the Hermitian curve. http://arxiv.org/abs/1202. 0894

    Google Scholar 

  2. Ballico E, Ravagnani A. On the geometry of the Hermitian two-point codes. http://arxiv.org/abs/1202. 2453

    Google Scholar 

  3. Ballico E, Ravagnani A. On the geometry of the Hermitian one-point codes. http://arxiv.org/abs/1203. 3162

    Google Scholar 

  4. Blake I, Heegard C, Hoholdt T, et al. Algebraic geometric codes. IEEE Trans Inform Theory, 1998, 44: 2596–2618

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosma W, Cannon J, Playoust C. The MAGMA algebra system. I. J Symbol Comput, 1997, 24: 235–265

    Article  MathSciNet  MATH  Google Scholar 

  6. Carvalho C, Kato T. On Weierstrass semigroups and sets: review of new results. Geom Dedicata, 2009, 239: 195–210

    Article  MathSciNet  Google Scholar 

  7. Carvalho C, Kato T. Codes from curves with total inflection points. Des Codes Cryptogr, 2007, 45: 359–364

    Article  MathSciNet  MATH  Google Scholar 

  8. Carvalho C. On V-Weierstrass sets and gaps. J Algebra, 2007, 312: 956–962

    Article  MathSciNet  MATH  Google Scholar 

  9. Carvalho C, Torres F. On Goppa codes and Weierstrass gaps at several points. Des Codes Cryptogr, 2005, 35: 211–225

    Article  MathSciNet  MATH  Google Scholar 

  10. Couvreur A. The dual minimum distance of arbitrary-dimensional algebraic-geometric codes. J Algebra, 2012, 350: 84–107

    Article  MathSciNet  MATH  Google Scholar 

  11. Duursma I, Kirov R, Park S. Distance bounds for algebraic geometric codes. J Pure Appl Algebra, 2011, 215: 1863–1878

    Article  MathSciNet  MATH  Google Scholar 

  12. Duursma I, Park S. Coset bounds for algebraic geometric codes. Finite Fields Appl, 2010, 16: 36–55

    Article  MathSciNet  MATH  Google Scholar 

  13. GAP-Groups, Algorithms, and Programming, Version 4. 4.12; 2008, http://www.gap-system.org

  14. Garcia A, Lax R F. Goppa codes and Weierstrass gaps. In: Lecture Notes in Mathematics, vol. 1518. Berlin: Springer, 1992, 33–42

    Google Scholar 

  15. Garcia A, Kim S J, Lax R F. Consecutive Weierstrass gaps and minimum distance of Goppa codes. J Pure Appl Algebra, 1993, 84: 199–207

    Article  MathSciNet  MATH  Google Scholar 

  16. Geil O, Munuera C, Ruano D, et al. On the order bounds for one-point AG codes. Adv Math Commun, 2011, 5: 489–504

    Article  MathSciNet  MATH  Google Scholar 

  17. Goppa V D. Geometry and Codes. In: Mathematics and its Applications Soviet Series, vol. 24. Dordrecht: Kluwer Academic Publishers Group, 1988

    Google Scholar 

  18. Güneri C, Stichtenoth H, Taskin Ihsan I. Further improvements on the designed minimum distance of algebraic geometry codes. J Pure Appl Algebra, 2009, 213: 87–97

    Article  MathSciNet  MATH  Google Scholar 

  19. Hirschfeld J W P. Projective Geometries over Finite Fields, 2nd ed. Oxford: Oxford University Press, 1998

    MATH  Google Scholar 

  20. Hirschfeld J W P, Korchmros G, Torres F. Algebraic Curves over a Finite Field. In: Princeton Series in Applied Mathematics. Princeton, NJ: Princeton University Press, 2008

    Google Scholar 

  21. Hoholdt T, Pellikaan R. On the decoding of algebraic-geometric codes. IEEE Trans Inform Theory, 1995, 41: 1589–1614

    Article  MathSciNet  Google Scholar 

  22. Homma M. The Weierstrass semigroup of a pair of points on a curve. Arch Math, 1996, 67: 337–348

    Article  MathSciNet  MATH  Google Scholar 

  23. Homma M, Kim S J. Goppa codes with Weierstrass pairs. J Pure Appl Algebra, 2001, 162: 273–290

    Article  MathSciNet  MATH  Google Scholar 

  24. Homma M, Kim S J, Komeda J. A semigroup at a pair of Weierstrass points on a cyclic 4-gonal curve and a bielliptic curve. J Algebra, 2006, 305: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  25. Hughes D R, Piper F C. Projective Planes. In: Graduate Texts in Mathematics, vol. 6. New York: Springer, 1973

    Google Scholar 

  26. Korchmáros G, Nagy G P. Hermitian codes from higher degree places. J Pure Appl Algebra, doi: 10.1016/j.jpaa.22013.04.002, 2013

    Google Scholar 

  27. Matthews G L. Weierstrass pairs and minimum distance of Goppa codes. Des Codes Cryptogr, 2001, 22: 107–121

    Article  MathSciNet  MATH  Google Scholar 

  28. Matthews G L. The Weierstrass semigroup of an m-tuple of collinear points on a Hermitian curve. In: Finite Fields and Applications. Lecture Notes in Computer Science, vol. 2948. Berlin: Springer, 2004, 12–24

    Chapter  Google Scholar 

  29. Matthews G L, Michel T W. One-point codes using places of higher degree. IEEE Trans Inform Theory, 2005, 51: 1590–1593

    Article  MathSciNet  Google Scholar 

  30. Matthews G L. Weierstrass semigroups and codes from a quotient of the Hermitian curve. Des Codes Cryptogr, 2005, 37: 473–492

    Article  MathSciNet  MATH  Google Scholar 

  31. Seidenberg A. Elements of the Theory of Algebraic Curves. Reading, MA: Addison-Wesley, 1968

    Google Scholar 

  32. Stichtenoth H. A note on Hermitian codes over GF(q 2). IEEE Trans Inform Theory, 1988, 34: 1345–1348

    Article  MathSciNet  Google Scholar 

  33. Stichtenoth H. Algebraic Function Fields and Codes, 2nd ed. In: Graduate Texts in Mathematics, vol. 254. Berlin: Springer-Verlag, 2009

    Google Scholar 

  34. Xing C P, Chen H. Improvements on parameters of one-point AG-codes from Hermtian codes. IEEE Trans Inform Theory, 2002, 48: 535–537

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang K, Kumar P V. On the true minimum distance of Hermitian codes. In: Lecture Notes in Mathematics, vol. 1518. Berlin: Springer, 1992, 99–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Korchmáros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korchmáros, G., Nagy, G.P. Lower bounds on the minimum distance in Hermitian one-point differential codes. Sci. China Math. 56, 1449–1455 (2013). https://doi.org/10.1007/s11425-013-4641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4641-x

Keywords

MSC(2010)

Navigation