Skip to main content
Log in

The densities for 3-ranks of tame kernels of cyclic cubic number fields

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let F be a cubic cyclic field with t (⩾ 2) ramified primes. For a finite abelian group G, let r 3(G) be the 3-rank of G. If 3 does not ramify in F, then it is proved that t−1 ⩽ r 3(K 2 O F ) ⩽ 2t. Furthermore, if t is fixed, for any s satisfying t−1 ⩽ s ⩽ 2t−1, there is always a cubic cyclic field F with exactly t ramified primes such that r 3(K 2 O F ) = s. It is also proved that the densities for 3-ranks of tame kernels of cyclic cubic number fields satisfy a Cohen-Lenstra type formula

$$d_{\infty ,r} = 3^{ - r^2 } {{\prod\limits_{k = 1}^\infty {\left( {1 - 3^{ - k} } \right)} } \mathord{\left/ {\vphantom {{\prod\limits_{k = 1}^\infty {\left( {1 - 3^{ - k} } \right)} } {\prod\limits_{k = 1}^r {\left( {1 - 3^{ - k} } \right)} }}} \right. \kern-\nulldelimiterspace} {\prod\limits_{k = 1}^r {\left( {1 - 3^{ - k} } \right)} }}^2 .$$

This suggests that the Cohen-Lenstra conjecture for ideal class groups can be extended to the tame kernels of cyclic cubic number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Boldy M C. The 2-primary Component of the Tame Kernel of Quadratic Number Fields. Nijmegen: Katholieke Universiteit Nijmegen, 1991

    Google Scholar 

  2. Browkin J. The functor K 2 for the ring of integers of a number field. Banach Center Publ, 1982, 9: 187–195

    MathSciNet  Google Scholar 

  3. Browkin J. Tame kernels of cubic cyclic fields. Math Comp, 2004, 74: 967–999

    Article  MathSciNet  Google Scholar 

  4. Browkin J, Schinzel A. On Sylow 2-subgroups of K 2 O F for quadratic number fields F. J Reine Angew Math, 1982, 331: 104–113

    MATH  MathSciNet  Google Scholar 

  5. Gerth F. On 3-class groups of pure cubic fields. J Reine Angew Math, 1975, 278/279: 52–62

    MathSciNet  Google Scholar 

  6. Gerth F. On 3-class groups of cyclic cubic extensions of certain number fields. J Number Theory, 1976, 8: 84–98

    Article  MATH  MathSciNet  Google Scholar 

  7. Gerth F. Densities for the ranks of certain parts of p-class groups. Proc Amer Math Soc, 1987, 99: 1–8

    Article  MATH  MathSciNet  Google Scholar 

  8. Gerth F. Densities for 3-class ranks in certain cubic extensions. J Reine Angew Math, 1987, 381: 161–180

    MATH  MathSciNet  Google Scholar 

  9. Cheng X Y. A note on the 4-rank densities of K 2 O F for quadratic number fields F. Comm Algebra, 2008, 36:1634–1648

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng X Y. Tame Kernels of Pure Cubic Fields. Acta Math Sin Engl Ser, 2012, 28: 771–780

    Article  MathSciNet  Google Scholar 

  11. Gras G. Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré premier l. Ann Inst Fourier Grenoble, 1973,23: 1–48

    MathSciNet  Google Scholar 

  12. Guo X J. A remark on K 2 O F of the rings of integers of totally real number fields. Communications in Algebra, 2007, 35: 2889–2893

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo X J. The 3-ranks of tame kernels of cubic cyclic number fields. Acta Arith, 2007, 129: 389–395

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo X J. On the 4-rank of tame kernels of quadratic number fields. Acta Arith, 2009, 136: 135–149

    Article  MATH  MathSciNet  Google Scholar 

  15. Hurrelbrink J, Kolster M. Tame kernels under relative quadratic extensions and Hilbert symbols. J Reine Angew Math, 1998, 499: 145–188

    MATH  MathSciNet  Google Scholar 

  16. Inaba E. Über die Struktur der l-Klassengruppe zyklischer Zahlkörper von Primzahlgrad l. J Fac Sci Imp Univ Tokyo Sect I, 1940, 4: 61–115

    MathSciNet  Google Scholar 

  17. Li Y Y, Qin H R. On the 3-rank of tame kernels of certain pure cubic number fields. Sci China Math, 2010, 9: 2381–2394

    Article  MathSciNet  Google Scholar 

  18. Mayer D C. Multiplicites of dihedral discriminants. Math Comp, 1992, 58: 831–847

    MATH  MathSciNet  Google Scholar 

  19. Osburn R. Densities of 4-ranks of K 2(O). Acta Arith, 2002, 1: 45–54

    Article  MathSciNet  Google Scholar 

  20. Osburn R, Murray B. Tame kernels and further 4-rank densities. J Number Theory, 2003, 2: 390–406

    Article  MathSciNet  Google Scholar 

  21. Qin H R. 2-Sylow subgroup of K 2 O F for real quadratic fields F. Sci China Ser A, 1994, 37: 1302–1313

    MATH  MathSciNet  Google Scholar 

  22. Qin H R. The 4-rank of K 2(O) for real quadratic fields F. Acta Arith, 1995, 72: 323–333

    MATH  MathSciNet  Google Scholar 

  23. Qin H R, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields. Acta Arith, 1995, 69: 153–169

    MATH  MathSciNet  Google Scholar 

  24. Qin H R. Tame kernels and Tate kernels of quadratic number fields. J Reine Angew Math, 2001, 530: 105–144

    MATH  MathSciNet  Google Scholar 

  25. Qin H R. The structure of the tame kernels of quadratic number fields I. Acta Arith, 2004, 113: 203–240

    Article  MATH  MathSciNet  Google Scholar 

  26. Qin H R. The 2-Sylow subgroup of K 2 for number fields F. J Algebra, 2005, 284: 494–519

    Article  MATH  MathSciNet  Google Scholar 

  27. Qin H R, Zhou H Y. The 3-Sylow subgroup of the tame kernel of real number fields. J Pure Appl Algebra, 2007, 209: 245–253

    Article  MATH  MathSciNet  Google Scholar 

  28. Qin H R. Reflection theorems and the p-Sylow subgroup of K 2 O F for a number field F. J Pure Appl Algebra, 2010, 214: 1181–1192

    Article  MATH  MathSciNet  Google Scholar 

  29. Tate J. Relations between K 2 and Galois cohomology. Invent math, 1976, 36: 257–274

    Article  MATH  MathSciNet  Google Scholar 

  30. Yin X B, Qin H R, Zhu Q S. The structure of the tame kernels of quadratic number fields II. Acta Arith, 2005, 116: 217–262

    Article  MATH  MathSciNet  Google Scholar 

  31. Yin X B, Qin H R, Zhu Q S. The structure of the tame kernels of quadratic number fields III. Comm Algebra, 2008, 36: 1012–1033

    Article  MATH  MathSciNet  Google Scholar 

  32. Yue Q, Yu J. The densities of 4-ranks of tame kernels for quadratic fields. J Reine Angew Math, 2004, 567: 151–173

    MATH  MathSciNet  Google Scholar 

  33. Zhou H Y. Tame kernels of cubic cyclic fields. Acta Arith, 2006, 124: 293–313

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYun Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Guo, X. & Qin, H. The densities for 3-ranks of tame kernels of cyclic cubic number fields. Sci. China Math. 57, 43–47 (2014). https://doi.org/10.1007/s11425-013-4622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4622-0

Keywords

MSC(2010)

Navigation