Skip to main content
Log in

Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper studies the multidimensional stability of traveling fronts in monostable reaction-diffusion equations, including Ginzburg-Landau equations and Fisher-KPP equations. Eckmann andWayne (1994) showed a one-dimensional stability result of traveling fronts with speeds cc * (the critical speed) under complex perturbations. In the present work, we prove that these traveling fronts are also asymptotically stable subject to complex perturbations in multiple space dimensions (n = 2, 3), employing weighted energy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams R. Sobolev Spaces. Pure and Applied Mathematics, 65. New York-London: Academic Press, 1975

    Google Scholar 

  2. Aronson D, Weinberger H. Multidimensional nonlinear diffusion arising in population genetics. Adv Math, 1978, 30: 33–76

    Article  MATH  MathSciNet  Google Scholar 

  3. Bricmont J, Kupiainen A. Stability of moving fronts in the Ginzburg-Landau equation. Comm Math Phys, 1994, 159: 287–318

    Article  MATH  MathSciNet  Google Scholar 

  4. Collet P, Eckmann J. The time dependent amplitude equation for the Swift-Hohenberg problem. Comm Math Phys, 1990, 132: 139–153

    Article  MATH  MathSciNet  Google Scholar 

  5. Eckmann J, Gallay T. Front solutions for the Ginzburg-Landau equation. Comm Math Phys, 1993, 152: 221–248

    Article  MATH  MathSciNet  Google Scholar 

  6. Eckmann J, Wayne C. The nonlinear stability of front solutions for parabolic pde’s. Comm Math Phys, 1994, 161: 323–334

    Article  MATH  MathSciNet  Google Scholar 

  7. Fisher R. The wave of advance of advantageous genes. Ann Eugenics, 1937, 7: 355–369

    Article  Google Scholar 

  8. Gallay T. Local stability of critical fronts in nonlinear parabolic partial differential equations. Nonlinearity, 1994, 7: 741–764

    Article  MATH  MathSciNet  Google Scholar 

  9. Goodman J. Stability of viscous scalar shock fronts in several dimensions. Trans Amer Math Soc, 1989, 311: 683–695

    Article  MATH  MathSciNet  Google Scholar 

  10. Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, 840. Berlin-New York: Springer-Verlag, 1981

    MATH  Google Scholar 

  11. Huang R. Stability of travelling fronts of the Fisher-KPP equation in ℝN. Nonlinear Diff Equ Appl, 2008, 15: 599–622

    Article  MATH  Google Scholar 

  12. Kapitula T. Multidimensional stability of planar travelling waves. Trans Amer Math Soc, 1997, 349: 257–269

    Article  MATH  MathSciNet  Google Scholar 

  13. Kirchgassner K, Raugel G. Stability of fronts for a KPP-system-the noncritical case. In: Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifucation and Stablility. Pitman Res Notes Math Ser, 352. Harlow: Longman, 1996

    Google Scholar 

  14. Kolmogoroff A, Petrovsky I, Piscounoff N. Éude de l’éuations de la diffusion avec crois-sance de la quantité de matièret son application a un problème biologique. Bull Univ Moscow Ser Internat Sec A, 1937, 1: 1–25

    Google Scholar 

  15. Levermore C, Xin J. Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II. Comm Partial Differential Equations, 1992, 17: 1901–1924

    Article  MATH  MathSciNet  Google Scholar 

  16. Lieb E, Loss M. Analysis, 2nd ed. Graduate Studies in Mathematics, 14. Providence, RI: Amer Math Soc, 2001

    MATH  Google Scholar 

  17. Murray J. Mathematical biology, 2nd ed. Biomathematics, 19. Berlin: Springer-Verlag, 1993

    Google Scholar 

  18. Raugel G, Kirchgassner K. Stability of fronts for a KPP-system, II: The critical case. J Differential Equations, 1998, 146: 399–456

    Article  MATH  MathSciNet  Google Scholar 

  19. Sattinger D. On the stability of waves of nonlinear parabolic systems. Adv Math, 1976, 22: 312–355

    Article  MATH  MathSciNet  Google Scholar 

  20. Szepessy A, Xin Z. Nonlinear stability of viscous shock waves. Arch Ration Mech Anal, 1993, 122: 53–103

    Article  MATH  MathSciNet  Google Scholar 

  21. Uchiyama K. The behavior of solutions of some nonlinear diffusion equations for large time. J Math Kyoto Univ, 1978, 18: 453–508

    MATH  MathSciNet  Google Scholar 

  22. Volpert A, Volpert V, Volpert V, Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs, 140. Providence, RI: Amer Math Soc, 1994

    Google Scholar 

  23. Xin J. Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, I. Comm Partial Differential Equations, 1992, 17: 1889–1899

    Article  MATH  MathSciNet  Google Scholar 

  24. Xin Z. On nonlinear stability of contact discontinuities. In: Hyperbolic Problems: Theory, Numerics, Applications. New York: Springer, 1994, 249–257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiHui Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H. Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations. Sci. China Math. 57, 353–366 (2014). https://doi.org/10.1007/s11425-013-4617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4617-x

Keywords

MSC(2010)

Navigation